H600 RF*Hawk* User Manual

Copyright © Tektronix. All rights reserved. Licensed software products are owned by Tektronix or its subsidiaries or suppliers, and are protected by national copyright laws and international treaty provisions.

Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specifications and price change privileges reserved.

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

DPX is a trademark of Tektronix, Inc.

Contacting Tektronix

Tektronix, Inc. 14200 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 USA

For product information, sales, service, and technical support:

- In North America, call 1-800-833-9200.
- Worldwide, visit www.tektronix.com to find contacts in your area.

Warranty

Tektronix warrants that this product will be free from defects in materials and workmanship for a period of one (1) year from the date of shipment. If any such product proves defective during this warranty period, Tektronix, at its option, either will repair the defective product without charge for parts and labor, or will provide a replacement in exchange for the defective product. Parts, modules and replacement products used by Tektronix for warranty work may be new or reconditioned to like new performance. All replaced parts, modules and products become the property of Tektronix.

In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the warranty period and make suitable arrangements for the performance of service. Customer shall be responsible for packaging and shipping the defective product to the service center designated by Tektronix, with shipping charges prepaid. Tektronix shall pay for the return of the product to Customer if the shipment is to a location within the country in which the Tektronix service center is located. Customer shall be responsible for paying all shipping charges, duties, taxes, and any other charges for products returned to any other locations.

This warranty shall not apply to any defect, failure or damage caused by improper use or improper or inadequate maintenance and care. Tektronix shall not be obligated to furnish service under this warranty a) to repair damage resulting from attempts by personnel other than Tektronix representatives to install, repair or service the product; b) to repair damage resulting from improper use or connection to incompatible equipment; c) to repair any damage or malfunction caused by the use of non-Tektronix supplies; or d) to service a product that has been modified or integrated with other products when the effect of such modification or integration increases the time or difficulty of servicing the product.

THIS WARRANTY IS GIVEN BY TEKTRONIX WITH RESPECT TO THE PRODUCT IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED. TEKTRONIX AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TEKTRONIX' RESPONSIBILITY TO REPAIR OR REPLACE DEFECTIVE PRODUCTS IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX AND ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX OR THE VENDOR HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

[W2 – 15AUG04]

Table of Contents

General Safety Summary	
Compliance Information	٧
EMC Compliance	٧
Safety Compliance	
Environmental Considerations	
Preface	Х
Key Features	Х
Documentation	χi
Instrument and PC Software	X
Conventions Used in This Manual	Х
Preventing Personal Injury from Lightning	Χ
Installation	
Standard Accessories	
Operating Considerations	
Installing Batteries	
Connecting the AC Adapter	
Charging the Batteries	
Powering On and Off the Instrument, and Functional Verification	
Calibrate the Touch Screen	
Starting the H600 RF <i>Hawk</i> Application	1
Setting Display Colors	1

Getting Acquainted with Your Instrument	1;
Instrument Elements	13
Power On/Standby and Status Panel	14
Input/Output Connectors	1
Signal Connectors	16
The User Interface	17
Getting Help	2
Operating Basics	2
Enabling Signal Standards	2
Enabling Signal Types	2
Select a Measurement Type	2
Spectrum/Spectrogram Measurements	30
DPX® Spectrum Display	3
Amplitude vs. Time Measurement	3
IF Output	4
Triggering	4
Signal Classification	4
iMap Measurement Mapping Mode	6
Remote Instrument Access.	78
	78
Configure the Instrument Network Settings	78
Configure the Instrument ActiveSync Settings	80
Configure ActiveSync on the PC	8

		Co	

Remote Control Using Virtual CE	83
Specifications	87
Index	

General Safety Summary

Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it.

To avoid potential hazards, use this product only as specified.

Only qualified personnel should perform service procedures.

While using this product, you may need to access other parts of a larger system. Read the safety sections of the other component manuals for warnings and cautions related to operating the system.

To Avoid Fire or Personal Injury

Use Proper Power Cord. Use only the power cord specified for this product and certified for the country of use.

Observe All Terminal Ratings. To avoid fire or shock hazard, observe all ratings and markings on the product. Consult the product manual for further ratings information before making connections to the product.

The inputs are not rated for connection to mains or Category II, III, or IV circuits.

Power Disconnect. The power cord disconnects the product from the power source. Do not block the power cord; it must remain accessible to the user at all times.

Do Not Operate Without Covers. Do not operate this product with covers or panels removed.

Do Not Operate With Suspected Failures. If you suspect that there is damage to this product, have it inspected by qualified service personnel.

Avoid Exposed Circuitry. Do not touch exposed connections and components when power is present.

Replace Batteries Properly. Replace batteries only with the specified type and rating.

Recharge Batteries Properly. Recharge batteries for the recommended charge cycle only.

Use Proper AC Adapter. Use only the AC adapter specified for this product.

Do Not Operate in an Explosive Atmosphere.

Terms in this Manual

These terms may appear in this manual:

WARNING. Warning statements identify conditions or practices that could result in injury or loss of life.

CAUTION. Caution statements identify conditions or practices that could result in damage to this product or other property.

Symbols and Terms on the Product

These terms may appear on the product:

- DANGER indicates an injury hazard immediately accessible as you read the marking.
- WARNING indicates an injury hazard not immediately accessible as you read the marking.
- CAUTION indicates a hazard to property including the product.

The following symbol(s) may appear on the product:

Compliance Information

This section lists the EMC (electromagnetic compliance), safety, and environmental standards with which the instrument complies.

EMC Compliance

EC Declaration of Conformity – EMC

Meets intent of Directive 2004/108/EC for Electromagnetic Compatibility. Compliance was demonstrated to the following specifications as listed in the Official Journal of the European Communities:

EN 61326-1:2006, EN 61326-2-1:2006. EMC requirements for electrical equipment for measurement, control, and laboratory use. 1234

- CISPR 11:2003. Radiated and conducted emissions, Group 1, Class A
- IEC 61000-4-2:2001. Electrostatic discharge immunity
- IEC 61000-4-3:2002. RF electromagnetic field immunity ⁵
- IEC 61000-4-4:2004. Electrical fast transient/burst immunity
- IEC 61000-4-5:2001. Power line surge immunity
- IEC 61000-4-6:2003. Conducted RF immunity ⁶
- IEC 61000-4-11:2004. Voltage dips and interruptions immunity ⁷

EN 61000-3-2:2006. AC power line harmonic emissions

EN 61000-3-3:1995. Voltage changes, fluctuations, and flicker

European Contact.

Tektronix UK, Ltd. Western Peninsula Western Road Bracknell, RG12 1RF United Kingdom

- 1 This product is intended for use in nonresidential areas only. Use in residential areas may cause electromagnetic interference.
- ² Emissions which exceed the levels required by this standard may occur when this equipment is connected to a test object.
- 3 To ensure compliance with the EMC standards listed here, high quality shielded interface cables should be used.
- When the application of a test with transient electromagnetic phenomenon results in the product rebooting, the self-recovery time can exceed 10 seconds. For example, at the 0% for 250 cycle Voltage Interruption test of IEC 61000-4-11.
- Residual spurious signals can increase to the following levels with exposure to the disturbance levels of this test: -65 dBm, due to disturbance signals within the 80-1000 MHz and 2.0-2.7 GHz frequency bands of this test. -55 dBm, due to disturbance signals within the 1.4-2.0 GHz frequency band of this test.
- Residual spurious signals can increase to -70 dBm with exposure to the disturbance levels of this test.
- Performance Criterion C applied at the 70%/25 cycle Voltage-Dip and the 0%/250 cycle Voltage-Interruption test levels (IEC 61000-4-11).

Australia / New Zealand Declaration of Conformity – EMC

Complies with the EMC provision of the Radiocommunications Act per the following standard, in accordance with ACMA:

CISPR 11:2003. Radiated and Conducted Emissions, Group 1, Class A, in accordance with EN 61326-1:2006 and EN 61326-2-1:2006.

Safety Compliance

- ANSI/UL61010-1:2004. Electrical Equipment for Measurement, Control, and Laboratory Use
- CSA C22.2 No. 61010.1:2004. Electrical Equipment for Measurement, Control, and Laboratory Use
- EN 61010-1:2001. Electrical Equipment for Measurement, Control, and Laboratory Use
- IEC61010-1:2001. Electrical Equipment for Measurement, Control, and Laboratory Use
- ISA 82.02.01. Electrical Equipment for Measurement, Control, and Laboratory Use

Environmental Considerations

This section provides information about the environmental impact of the product.

Product End-of-Life Handling

Observe the following guidelines when recycling an instrument or component:

Equipment Recycling. Production of this equipment required the extraction and use of natural resources. The equipment may contain substances that could be harmful to the environment or human health if improperly handled at the product's end of life. In order to avoid release of such substances into the environment and to reduce the use of natural resources, we encourage you to recycle this product in an appropriate system that will ensure that most of the materials are reused or recycled appropriately.

This symbol indicates that this product complies with the applicable European Union requirements according to Directives 2002/96/EC and 2006/66/EC on waste electrical and electronic equipment (WEEE) and batteries. For information about recycling options, check the Support/Service section of the Tektronix Web site (www.tektronix.com).

Battery Recycling. This product may contain a rechargeable battery, which must be recycled or disposed of properly. Please properly dispose of or recycle the battery according to local government regulations.

Mercury Notification. This product uses an LCD backlight lamp that contains mercury. Disposal may be regulated due to environmental considerations. Please contact your local authorities or, within the United States, refer to the E-cycling Central Web page (www.eiae.org) for disposal or recycling information.

Perchlorate Materials. This product contains one or more type CR lithium batteries. According to the state of California, CR lithium batteries are classified as perchlorate materials and require special handling. See www.dtsc.ca.gov/hazardouswaste/perchlorate for additional information.

Transporting Batteries

The capacity of the lithium ion rechargeable battery pack in this product is under 100 Wh. The lithium-equivalent content, as defined by the UN Manual of Tests and Criteria Part III Section 38.3, is under 8 g per pack and 1.5 g per individual cell. Consult your air carrier for applicability and determination of any special lithium ion battery transportation requirements.

Restriction of Hazardous Substances

This product has been classified as Monitoring and Control equipment, and is outside the scope of the 2002/95/EC RoHS Directive.

Preface

This manual describes the features and basic operation of the H600 RFHawk. For more detailed information on specific fields or tasks, tap the help buttons in the application to open the online help for those items.

Key Features

The H600 RFHawk is a rugged, multi-standard spectrum analyzer, signal analysis, and interference mapping tool optimized for field use. Key features include:

- Spectrum analyzer input frequency range of 10 kHz to 6.2 GHz covers most modern signal sources
- DPX[™] Spectrum color bitmap display that shows signal rate-of-occurrence and trace shape changes to help highlight short-duration signal features
- Plot measurements directly onto geo-referenced maps (using GPS) or image maps for on-site analysis of interference and coverage problems
- Signal Classification with spectral correlation testing and plotting, and signal profiles for analyzing and classifying unknown signals
- Amplitude vs. Time measurement (similar to a Zero-Span measurement on a swept-IF spectrum analyzer)
- Multiple signal markers, signal traces, and trace modes provide flexible measurement capabilities
- Spectrogram display for detection of intermittent signals
- Key RF measurements

Documentation

To read about	Use these documents
Installation and operation (overviews)	H600 RFHawk User Manual. The user manual contains general information about how to put your instrument into service, guides to user interface controls, and key application examples.
Help using the application	Online Help. The online help is context sensitive, displaying information appropriate for the active screen or the selected help button. (See page 26, Getting Help.)

Instrument and PC Software

The following instrument software upgrades and PC tools are available on the Tektronix Web site (www.tektronix.com). You must have a valid software key for the instrument serial number to install instrument software. PC-based software tools do not require an option key.

RFHawk Software Upgrade Archive File	The RFHawk upgrade archive file upgrades the H600 instrument software to the latest version.
RFHawk PC Application Installation File	The H600 RFHawk PC simulator software provides a PC simulation of the instrument functionality. The simulator can display saved instrument measurement results, create and edit mask test files, and so on. The only limit to the PC simulator is that it cannot take measurements.
iMap Converter PC Application Installation File	The iMap Converter PC tool lets you convert image or industry-standard coordinate maps to GSF-format map files for use with the instrument iMap mapping function. The iMap Converter tool also lets you add coordinate information to image files or create coordinate map files from Google Earth and Microsoft MapPoint.

Signal DB Editor PC Application Installation File	The signal database editor lets you edit the instrument signal database files to customize signal definitions.
USB Slave Device PC Registration Utility	The USB slave device registration software enables a PC to communicate with the instrument through a USB cable. You must run this software before using the VirtualCE software to remotely control the instrument over a USB connection. You do not need to run this program if you plan to use VirtualCE to remotely control the instrument over a network or RS-232 connection.
VirtualCE PC Application Installation File	The VirtualCE PC application lets you remotely control your instrument from a virtual interface on a PC or laptop. If you intend to use a USB cable to access the instrument from the VirtualCE application, you must run the USB slave device registration program before installing and using this application.

Downloading Software

- 1. Use your Web browser to go to www.tektronix.com/software.
- 2. Enter the product model number (H600) in the Search by keyword field and click Go.
- 3. Scroll through the list and select the appropriate link for a software item to show more information or to download the software.

The instructions to install the software are on the Web download page for each software item or included with the downloaded file.

Conventions Used in This Manual

The following icons are used in this manual:

Sequence Step Front panel power

Connect power

Preventing Personal Injury from Lightning

WARNING. To prevent personal injury from the effects of lightning, exercise the following precautions when using this product:

Before connecting this product to any source

- Check your local weather forecast for the possibility of thunderstorms or lightning.
- If weather conditions could allow thunderstorms or lightning to develop, be sure to visually check the sky and weather conditions in your area frequently.
- If you can hear thunder or if you see lightning, do not connect this product to any source which may be exposed to the effects of lightning.
- Use your own good judgement and common sense. You must protect yourself from the effects of lightning.
- You must assume that hazardous voltages will be present on exposed surfaces of this product if it is connected to a source exposed to lightning. The insulation of this product will not protect you from these hazardous voltages.

Do not connect this product to any source which might be subject to the effects of lightning

If thunderstorms or lightning are in your vicinity:

- When weather conditions that could lead to lightning activity exist in your area, you could be at risk of a lightning strike before the cloud is close enough for you to hear thunder or see lightning.
- When lightning strikes a structure or facility, current travels through rebar, concrete, pipes, cables, vent stacks, and electrical system.
- Lightning can induce electric and magnetic fields into structures and portions of wiring. The length of a conductor affected by the magnetic field of a lightning strike may exceed two miles.

Be alert and aware of the effects of lightning

- When lightning strikes a conductor, which in turn introduces the current into an area some distance from the ground strike point, equipment can be damaged and personnel injured if they become an indirect path in the completion of the ground circuit.
- Conductors such as the braided shields of cables or unshielded wires will have significant transient currents flowing in them in regions exposed to the electric field effect of lightning.
- Induced voltages may cause breakdown of insulation in wiring at connectors and in electrical components or breakdown of air.

xviii H600 RF*Hawk* User Manual

Installation

Carefully unpack your instrument and verify that it includes the standard accessories.

Standard Accessories

Accessory	Tektronix part number
H600 RFHawk instrument	H600
H600 RFHawk User Manual	071-2464-xx
AC Power Adapter	119-7288-xx
Lithium-lon Battery	146-0151-xx
GPS Antenna	119-7424-xx
Tilt stand	348-1661-xx
Soft carry case	016-1775-xx
BNC Connector cover (2)	200-0678-xx
N Connector cover (1)	200-4696-xx
Audio jack mute plug (mute all audio output from the instrument speaker)	131-8284-xx
·	

Your instrument may also include optional accessories. Verify that the optional accessories you ordered are included with your instrument. For a current list of accessories, upgrades, and options, including service options, available for your instrument, visit the Tektronix Web site, www.tektronix.com.

Operating Considerations

AC Adapter	Input voltage and current: 100 V - 240 V AC, 1.5 A Input frequency: 50 Hz - 60 Hz Output voltage and current: 24 V DC, 2.7 A
Dimensions	Height: 25.5 cm. (10.0 in) Width: 33 cm. (13 in) Depth: 12.5 cm. (4.8 in)
Weight	Weight: 6.0 kg (13.25 lbs) , instrument and one battery
Temperature Range	Operating: 0 °C to +50 °C (32 °F to 122 °F) specified performance, –10 °C to +50 °C (14 °F to 122 °F) typical Nonoperating: –40 °C to +60 °C (–40 °F to 160 °F) Battery charging: limited to 0 °C to 45 °C (32 °F to 113 °F)
Humidity	Operating and Nonoperating: 5% to 95% relative humidity (RH) at up to +30 °C, 5% to 45% RH above +30 °C up to +50 °C, noncondensing
Altitude	Operating: Up to 4,600 m (15,092 ft.) Nonoperating: Up to 12,192 m (40,000 ft.)
RF Signal Input	Input frequency range: 10 kHz to 6.2 GHz Coupling: AC Input impedance: 50 Ω (nominal) Maximum input power without damaging instrument: 50 W rms 10 kHz to 3.2 GHz, 15 W rms 3.2 GHz to 6.2 GHz

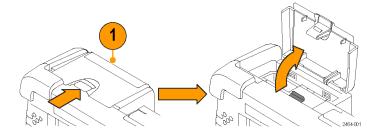
Cleaning

- Clean the exterior surfaces of the instrument with a dry lint-free cloth or a soft-bristle brush.
- Use a cloth or swab moistened with deionized or distilled water, or a 75% isopropyl alcohol solution for more stubborn stains, to clean the instrument or touch screen; use just enough moisture to dampen the cloth or swab.
- Use a gentle amount of force when cleaning the touch screen.

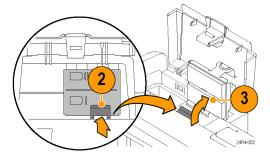
CAUTION. Do not get moisture inside the instrument during exterior cleaning.

Do not wash the front-panel On/Standby switch. Cover the switch while washing the instrument.

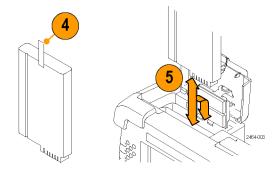
Do not spray liquids directly on the instrument or touch screen.


Do not use abrasive cleaners, or chemical cleaning agents that contain benzene, toluene, xylene, acetone, or similar solvents; they can damage the instrument or touch screen. Do not use commercial glass cleaners to clean the touch screen.

Do not scrub the touch screen with excessive force while cleaning.


Installing Batteries

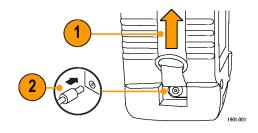
The instrument comes standard with a single battery, which is not installed when the instrument is shipped. To install the battery, do the following:


1. Push on the battery door latch, then open the battery door.

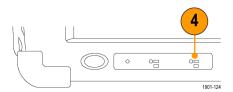
- **2.** Push the metal battery retainer tab down and towards the back of the instrument.
- 3. Lift the battery retainer up.

- 4. Lift battery by the tab.
- **5.** Insert the battery, oriented as shown, into either battery slot.
- **6.** Close and latch the metallic battery retainer and the battery compartment door.
- 7. Reverse steps 1 through 6 to remove a battery.

You can add a second battery to increase the operating time. Replace a battery with the specified type only. To purchase a battery, contact your Tektronix Service Center for the correct part number.


NOTE. Disconnect power supply cables from the instrument before installing or removing batteries.

New batteries, or batteries that have not been used for an extended period, must be charged before using them to power the instrument. (See page 7, Charging the Batteries.)


Connecting the AC Adapter

- **1.** Lift the instrument strap to expose the power adapter connector.
- **2.** Connect the AC power adapter to the instrument.

- 3. Connect the AC adapter to a properly-grounded AC power source using the provided power cord.
- **4.** Charge the batteries before using the instrument on battery power for the first time. (See page 7, *Charging the Batteries*.)

Charging the Batteries

Charge the batteries before using the instrument on battery power for the first time. Batteries are partially charged and calibrated at the factory. A calibrated battery allows the instrument to more accurately estimate how long the application modules can operate before the instrument automatically powers off. The front-panel BATTERIES charge status indicator turns off when charging is complete.

See the H600 application online help topic Battery Calibration for information on calibrating batteries.

Approximate charge time 1

Number of batteries	Instrument powered on	Instrument powered off
1	10 hours	5.5 hours
2	20 hours	11 hours

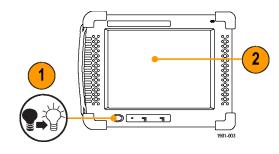
¹ Charge times are typical numbers for batteries that are low but not completely discharged.

Battery Power Management

The Power Management tool lets you determine battery charge status, obtain battery manufacture date and charge capacity information, and set power saving modes to maximize instrument run time.

To open the Power Management tool, select **Start > Settings > Control Panel**, and then double-tap the **Power Management** icon. You can also open the Power Management tool by double-tapping on the power icon in the Windows CE system tray. The power icon is either a power plug or a battery, depending on the current instrument power source.

Powering On and Off the Instrument, and Functional Verification


 Tap the On/Standby button to power on the instrument.

The instrument WindowsCE Status bar shows the Battery icon when the instrument is operating on battery power and the External Power Connected icon when the instrument is operating with an external adapter.

To power off the instrument, tap the **On/Standby** button again.

For information on the instrument on/standby power modes, see the online help: Start > Help > Tektronix Basics > Shutting Down the Instrument.

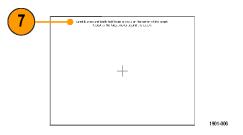
For functional verification, watch the screen. Verify that the instrument does not display any power-on diagnostic error messages.

Calibrate the Touch Screen

Before using the instrument for the first time, calibrate the touch screen display to respond correctly to your taps. The instrument user interface is based on touch screen technology. You tap (touch) virtual controls on the instrument screen to select and operate instrument controls. Virtual controls behave the same way as physical controls.

 Tap Start > Settings > Control Panel to open the Control Panel screen.

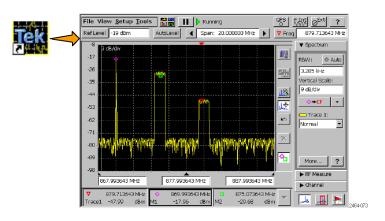
2. Double-tap the **Stylus** icon on the Control Panel screen.


- 3. In the Double-Tap tab, double-tap the checkerboard grid at a comfortable speed with your stylus or finger to set the tap rate.
- **4.** Double-tap the test icon to verify your settings.

- **5.** Tap the **Calibration** tab and read the instructions.
- **6.** Tap the **Recalibrate** button to open the Cursor Position target screen.

Follow the target screen instructions.
 When the position target disappears, touch
 anywhere on the screen to return to the
 Calibration tab.

8. Tap **OK** to save calibration settings.

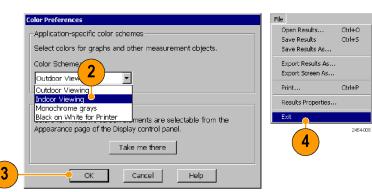


Starting the H600 RFHawk Application

The RF*Hawk* application starts automatically when you power on the instrument for the first time. If RF*Hawk* does not start automatically, or you have stopped the application, use either of the following methods to start the application:

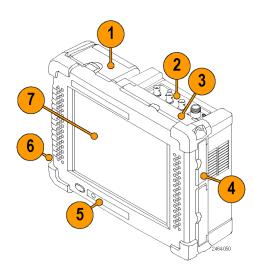
- Double-tap the RFHawk icon on the instrument screen.
- Select Start > Programs > Tektronix Applications > RFHawk.

The instrument opens the application. The Microsoft WindowsCE taskbar displays a button for each running application. To bring the application to the front of the screen, tap the **RFHawk** button in the taskbar.

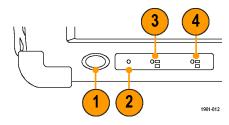

Setting Display Colors

You can change the color scheme used in the instrument display. The color schemes optimize the display colors for use in different environments (outdoors or indoors) and for better printing quality on black and white (monochrome) printers.

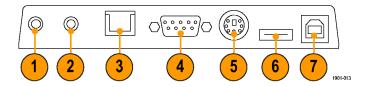
1. Select Setup > Color Preferences.


- 2. Tap the **Color Scheme** list field and select a display color scheme.
- **3.** Tap **OK**.
- 4. Select File > Exit to close the application.
- **5.** Restart the application to enable the changed color scheme.

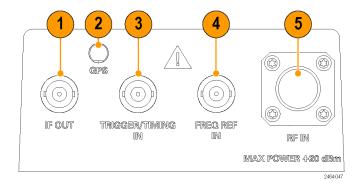
Getting Acquainted with Your Instrument


Instrument Elements

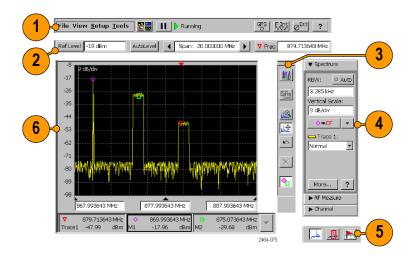
- 1. Battery compartment.
- **2.** Signal Connectors. (See page 16, *Signal Connectors*.)
- **3.** Input/Output ports. (See page 15, Input/Output Connectors.)
- 4. PCMCIA card ports.
- Power button and Status panel. (See page 14, Power On/Standby and Status Panel.)
- **6.** Connector for external power adapter. (See page 6, *Connecting the AC Adapter.*)
- 7. Touch screen.


Power On/Standby and Status Panel

- Power On/Standby button. Push to power on or off the instrument. For more information, access the online help: Start > Help > Tektronix Basics > Shutting Down the Instrument.
- 2. Reset button. Performs a hardware reset; all programs and data loaded into volatile memory are erased. Generally only used to recover from a system lock-up. Use a thin probe to push the reset button.
- Power/Display status. Green indicates that the instrument is powered on. Amber indicates that the instrument is powered on but the display is turned off (to conserve power).
- Battery status. Green indicates that the instrument is connected to an external power source and is charging installed batteries. Red indicates a low battery. No color indicates that the batteries are charged.


Input/Output Connectors

- 1. Microphone input
- 2. Headphone jack
- 3. Ethernet connector (RJ-45)
- 4. Serial RS-232 connector
- **5.** PS/2 keyboard connector
- 6. USB Host connector
- 7. USB Slave connector


Signal Connectors

- 1. IF OUT. A down-converted intermediate frequency signal that you can connect to external test equipment, such as an oscilloscope, for further signal analysis. (See page 43, *IF Output*.)
- 2. GPS. Connects to the GPS antenna.
- TRIGGER/TIMING IN. Connect to a TTL-level signal to trigger the instrument with an external source. (See page 45, *Triggering*.)
- FREQ REF IN. Connect to an external frequency reference signal to improve measurement accuracy. See the online help topic *Input Signal Requirements* for more information.
- **5.** RF IN. Connects the RF antenna or input signal source to the instrument.

The User Interface

- 1. Command bar. (See page 18, The Command Bar.)
- 2. Global Measurement controls. (See page 20, The Global Measurement Controls.)
- 3. **Display controls**. (See page 22, *Display Control Buttons*.)
- **4. Measurement drawers**. (See page 21, *The Measurement Drawer Buttons*.)
- Measurement mode buttons. (See page 24, The Measurement Mode Buttons.)
- 6. Measurement results. Shows the waveform displays, measurement results, and marker readouts. The appearance of this area changes depending on the selected measurement mode and measurement type.

The Command Bar

Contains the application menus, as well as buttons for running/pausing the application and setting GPS, reference signal, and external amplifier/attenuator parameters.

Element	Description
File View <u>Setup T</u> ools	Menus. See the online help topic <i>Menus</i> for information about the menu functions.
	Select Measurement Display button. Opens a dialog box from which to select the instrument measurement mode. (See page 29, Select a Measurement Type.)
► II	Run/Pause button. Runs or Pauses the current measurement acquisition.
GPS	The GPS status button. Shows the GPS signal lock status of the GPS receiver (internal or external). The color indicates the GPS receiver signal lock status. Tap this button to open the GPS dialog box. See the online topic <i>The GPS Dialog Box</i> for more information.
F.W	The Measurement Reference Frequency status button. Shows the measurement frequency reference source. Tap this button to open the Inputs dialog box.
FGPS	The available measurement reference frequency sources are the internal instrument frequency reference (F INT) an external reference (F EXT), and a GPS-derived reference (FGPS). See the online topic <i>The Inputs Dialog Box</i> for more information.

Element	Description
©Ext ≥Ext 1Ext 249-064	The RF Input Signal Gain/Attenuation status button. Shows the external attenuator or amplifier status. Tap this button to open the Inputs tab where you can set the input signal amplification or attenuation values. Use this button if you connect an attenuator or amplifier to the input signal. See the online topic <i>The Inputs Dialog Box</i> for more information.
?	Help button. Opens the online help. Online help is context-sensitive and normally displays a help topic related to the current measurement mode or screen. If the current screen is not context-sensitive, the instrument opens the online help at the main help menu. Use the index, or do a word search, to locate specific information.

The Global Measurement Controls

These controls set the display reference level (manually or automatically), the frequency span, and the measurement frequency.

Element	Description
Ref Level -18 dBm	Reference Level button and field. Shows the current RF input signal reference level. Tap the Ref Level button to open a keypad and enter a specific level value. Tap the Ref Level field to open an increment control to increase/decrease the current reference level value.
AutoLevel	AutoLevel button. Tap the button to automatically detect the maximum input signal level across the full instrument frequency range and set the Reference Level appropriately.
◀ Span: 3.285230 MHz ▶	Span controls and field. Shows the frequency span of the displayed signal. Tap the arrow buttons to increment or decrement the span value by the default span units (1–2–5). Tap the Span field to open a keypad and enter a specific span value.
▼ Freq 873.800000 MHz	Measurement Frequency button and field. Shows the spectrum signal measurement frequency. Tap the Freq button to open a keypad and enter a specific frequency value. Tap the frequency field to open an increment control to increase/decrease the current reference level value in steps.
	Use the Freq/Span tab (Spectrum drawer > More) to couple or uncouple the measurement frequency with the display center frequency.

The Measurement Drawer Buttons

Element

Description

Drawer buttons provide additional controls for setting parameters. The displayed set of drawer buttons changes based on the selected measurement mode. The drawer buttons are always on screen to provide fast access to the most important controls for that measurement or setting.

Tap on a drawer button to open that drawer. A down-pointing arrow indicates an open drawer.

Tap the **More** button to open parameter tabs with which you can set additional measurement parameters.

Tap the **Help** button [?] to display information on that drawer.

Display Control Buttons

The Display Control buttons let you select the type of signal display, move the signal display area, and turn markers on and off.

Element	Description
مللالبسر	Spectrum button. Displays the Spectrum measurement. (See page 31, Display a Spectrum Signal.)
	When displaying a spectrum, this button is replaced with the DPX® Spectrum button.
11	DPX Spectrum button. Displays the DPX Spectrum measurement. (See page 36, Display a DPX Spectrum Signal.)
	When displaying a DPX spectrum, this button is replaced with the Spectrum button.
	Front Trace button. Selects which trace is in front on the display. Tap the button to cycle through all enabled traces. The Trace field in the Spectrum drawer shows the front trace name and trace type. See the online help topic <i>The Trace Tab</i> for more information.
	Zoom button. Lets you zoom (expand) the waveform by changing the span. Tap and drag from left to right to zoom in (expand) the waveform. Tap and drag from right to left to zoom out (shrink) the waveform. The zoom function only works in the horizontal (frequency span) axis for most waveforms.
	For Spectral Correlation Plots, the zoom function works in both the horizontal and vertical axis.
	Cancel Zoom button. In Amplitude versus Time measurements, if you have zoomed in on a waveform, this button cancels the zoom action and restores the waveform to display the entire acquisition.
المنظمة	Move Waveform button. Lets you move the waveform display. Tap and drag on the screen to move the waveform in a horizontal or vertical direction (you cannot move the display diagonally). The vertical reference level scale changes to track the movement. If you move the display such that the measurement frequency is off-screen, the instrument sets the measurement frequency to the nearest edge of the display.

Element	Description
المسلط	Pan Horizontal button. Lets you move the waveform display in a horizontal direction. If you move the waveform such that the measurement frequency is off-screen, the instrument sets the measurement frequency to the nearest edge of the display.
سنست	Pan Vertical button. Lets you move the waveform display in a vertical direction.
k)	Undo button. Undoes the last touch screen tap or drag action (such as a move or zoom).
×	Reset button. Clears the current signal data and starts a new signal acquisition.
%	Display Markers button. Shows or hides marker icons and readouts. Hiding markers increases the waveform display update rate. See the online help topics <i>Markers</i> and <i>The Markers Tab</i> for more information.
The following	buttons are shown only when in Signal Classification mode, and replace spectrum display control buttons.
	Edit Region button. Enables the region edit mode and replaces the Spectrum Zoom and Move Waveform control buttons with the Change Span and Move Region buttons, respectively. (See page 51, <i>Edit a Signal Classification Region</i> .)
	Change Span button. Lets you change the frequency span of a region. You cannot use this function on a declared (classified) region. (See page 51, <i>Edit a Signal Classification Region</i> .)
	Move Region button. Lets you move a region to a new area on the signal. You cannot use this function on a declared (classified) region. (See page 51, Edit a Signal Classification Region.)

The Measurement Mode Buttons

The Measurement Mode buttons select the type of measurement or operation to perform.

Element	Description	
عللاحبمر	Spectrum Measurement button. Sets the instrument to display spectrum measurements. (See page 31, <i>Display a Spectrum Signal</i> .)	
yes Ida	Signal Classification button. Sets the instrument to define signal regions, analyze, identify, and classify signals of interest. (See page 48, <i>Define a Signal Classification Region</i> .)	
	iMap button. Sets the instrument to place instrument measurements on a map. Use for graphically recording measurements to help analyze signal characteristics, locate interference, and save measurement/location information. (See page 62, iMap Measurement Mapping Mode.)	

Parameter Entry Controls

Tap on a parameter field or button to open the appropriate parameter entry control for that field or button.

Element Description The Increment control lets you use buttons to increase or decrease the value of the field in Meas Freq MHz small or large steps. The single arrow buttons make small changes. The double arrow buttons 879.713643 make larger changes. Tap a keypad button to open a keypad in which to enter a value in the selected field. The keypad content changes to show the available entry functions for the selected item. WindowsCE provides an Input Panel (virtual keyboard) that you can use to enter text such as file names. In most cases, when the instrument opens a dialog box that includes fields for text entry, the Input Panel also opens. When you close the dialog box, the Input Panel also closes. c v b n m To manually open the Input Panel, tap the WindowsCE Input Panel button (Imput Panel button) icon in the task bar). You can open a standard keyboard or a large keyboard. Tap the Input Panel button again and select Hide Input Panel to close the keyboard.

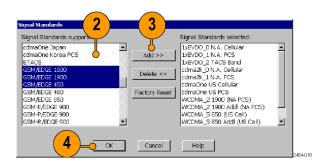
H600 RF*Hawk* User Manual 25

You can also open the Input Panel from Tools > Keyboard.

Getting Help

The application includes a comprehensive online help system. You access the online help using the following methods:

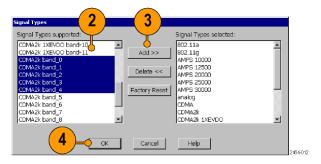
Online help element	Description
?	Help button. Located at the top right of the screen, as well as on most measurement function drawers or tabs Tap this button to display a help topic that is relevant to the current display mode, measurement drawer, or tab contents.
Help	Dialog box help button. Tap this button to display an online help topic relevant to that dialog box.


Operating Basics

Enabling Signal Standards

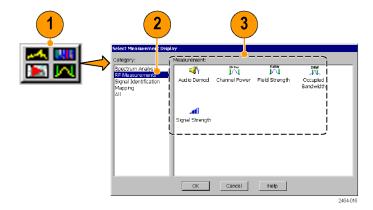
Enable (select) the signal standards that you expect to analyze or measure. Enabled signal standards are listed in various fields in the instrument.

- 1. Select Setup > Signal Standards.
- Tap the name of the standard in the Signal Standards supported list that you want to enable. Drag the stylus to select two or more contiguous standards.
- Tap the Add >> button to add the selected standard(s) to the Signal Standards selected list.
- Tap **OK**. The enabled standards are now selectable from any Standards drop-down list.


Enabling Signal Types

Enable (select) the signal types that you expect to analyze or measure. Enabled signal types are listed in various fields in the instrument. Use enabled signal types to set measurement parameters such as measurement frequency and bandwidth.

1. Select Setup > Signal Types.



- Tap the name of the standard in the Signal Types supported list that you want to enable. Drag the stylus to select two or more contiguous standards.
- Tap the Add >> button to add the selected standard(s) to the Signal Types selected list.
- Tap OK. The enabled types are now selectable from Signal Types drop-down lists.

Select a Measurement Type

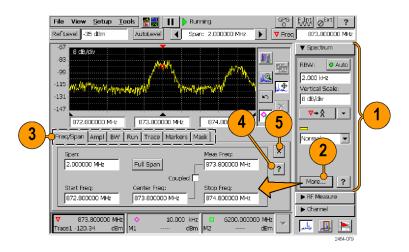
- 1. Tap the Select Measurement Display button.
- 2. Tap an item in the Category field.
- Double-tap an item in the Measurement field to open the selected measurement display mode.

Spectrum/Spectrogram Measurements


The Spectrum measurement displays the spectral content of a signal (power versus frequency). The Spectrum measurement features include:

- A measurement frequency range of 10 kHz to 6.2 GHz that covers most modern signal sources
- The ability to detect very low level signals
- Up to seven measurement markers
- Intermodulation markers to quickly check for this common source of unusual signals
- Two waveform traces and five trace modes.

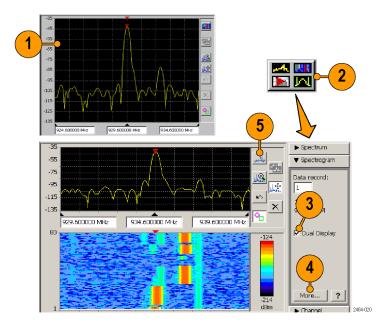
The Spectrogram measurement displays the spectral content (power versus frequency) of a signal over time, where the signal amplitude is represented by a range of colors. This display is especially useful for recording intermittent signals, as you can set the Spectrogram to acquire measurements from seconds to days apart, and automatically save the measurements to a file.


Display a Spectrum Signal

- 1. Tap the **Spectrum** mode button.
- Tap the Freq button and enter a measurement frequency.
- 3. Tap the Span controls to change the displayed frequency span to show the waveform area of interest. Or tap the Span field and change the span value using the Increment control or the Keypad control.
- Tap the AutoLevel button to set the display reference level. Or tap the Ref Level button and enter a value with the Reference Level keypad.

Set Other Spectrum Parameters

- Use the controls in the Spectrum drawer to set resolution bandwidth (RBW), the display vertical scale, the measurement frequency Marker-To button actions, and the waveform trace type.
- Tap the More button in the Spectrum drawer to display the spectrum parameter tabs.
- **3.** Tap a tab to display the parameters set by that tab.
- **4.** Tap the **Help** (question mark) button on a tab to display online help for that tab.
- Tap the Close (X) button on a tab to close the tab display and return the instrument to a full-screen display mode.

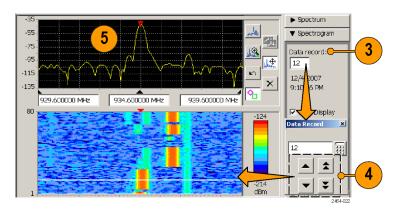


Display a Spectrogram

- 1. Display a spectrum signal of interest.
- 2. Tap the **Measurement Display** button and select the **Spectrogram** measurement.
- Set or clear the **Dual Display** check box in the Spectrogram drawer to enable or disable a split-screen spectrum/spectrogram display.

NOTE. If tabs are open, tap the tab **Close** button (X) to close the tabs and display the spectrogram on the lower half of the screen.

- Tap the More button to display the spectrogram parameter tabs.
- Tap the **Spectrum** display control button to return to a Spectrum display.

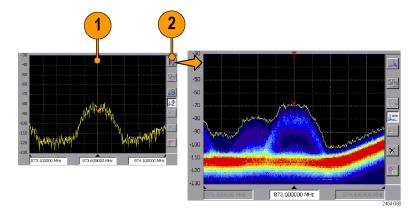


See the online spectrogram help topics for information on other spectrogram operations.

View a Spectrogram Record

- 1. Display a spectrogram.
- 2. Tap the **Stop** button to stop measurement acquisition.
- Tap the Data Record field in the Spectrogram drawer to open the Data Record increment control.
- 4. Tap the arrow keys to move the record cursor (white line in the spectrogram plot) to a record of interest. The Spectrogram drawer shows the time and date information of the selected record directly below the Data Record field.
- The spectrum display shows the waveform for the selected record (in dual display mode).
 - See the online help topic *View Saved Spectrogram Files* for information on viewing saved spectrogram records.

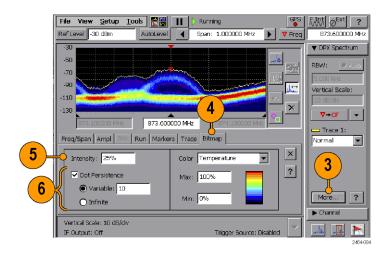
DPX® Spectrum Display


DPX Spectrum Display technology uses color shading and data persistence to show how signal characteristics change over time.

Color shading shows how consistent the shape of a trace is, where the color represents the rate-of-occurrence for signal features. The DPX Spectrum Display works by using a two-dimensional array to represent data points on the display. Each time a trace writes to a point on the display, the instrument increments a counter for that point. A color is assigned to each point in the display based on the value of its counter divided by the number of acquisitions (hit percent). Thus, as acquisitions occur over time, the DPX waveform, referred to as the Bitmap, uses color to show how frequently a display point has been written to.

Persistence sets how long a point on the display is visible, which can help show infrequent events. You can set the display persistence to be Variable or Infinite. In variable persistence mode, the decay period determines how long a point is displayed. In infinite persistence mode, once a point in the display has been written to, it remains visible until the measurement is restarted.

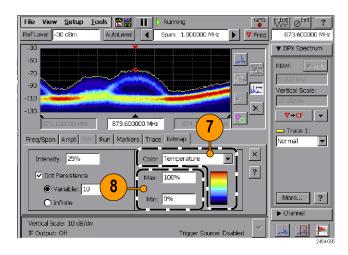
Display a DPX Spectrum Signal


- 1. Display a spectrum signal of interest. (See page 31, *Display a Spectrum Signal*.)
- 2. Tap the **DPX Spectrum** display control button.

- Tap the More button in the DPX Spectrum drawer to display the DPX spectrum parameter tabs.
- Tap the Bitmap tab.
- 5. Tap the Intensity field and set the intensity to control the visibility of events. A higher intensity level enables the display of data points from single, short events, and also makes such an events subject to the persistence controls. This allows you to see the effect of the Persistence controls on infrequent events. Intensity also affects the colors used to display the Bitmap.
- Tap the **Dot Persistence** check box to enable Bitmap point display persistence controls. Dot persistence sets how long a point is displayed if it is not updated with new data

Variable sets the decay period for how long a point is displayed before fading.

Infinite sets all points to remain visible indefinitely until you restart signal acquisition.

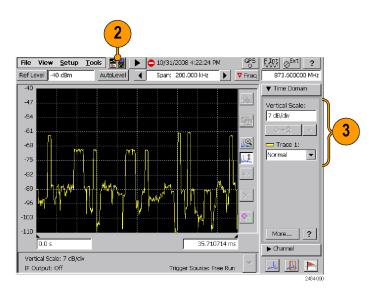

- 7. Use the **Color** field to set the color scheme used for the Bitmap trace.
- 8. Use the Max and Min fields to set the hit percent color range of data points. Data points that are between the Max and Min settings are displayed using the colors in the order shown in the color scheme.

Max sets the hit percent required to display a data point using the color at the top of the color scheme. The default value is 100%.

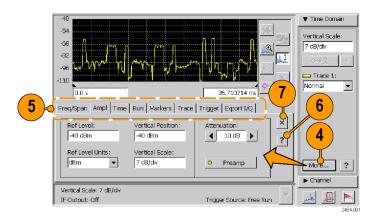
For example, if the Max value is set to 90%, then data points that occur 90% or more of the time are displayed using the maximum (top) color of the color scheme.

Min sets the minimum hit percent required to display a data point, starting with the color at the bottom of the color scheme. The default value is 0%.

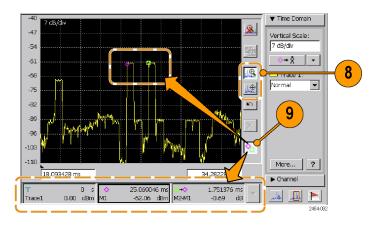
For example, if the Min value is set to 10%, then data points must occur at least 10% of the time to be displayed in the Bitmap.


Amplitude vs. Time Measurement

The Amplitude versus Time measurement shows the RF signal amplitude variation over a period of time within the acquisition bandwidth (as set by the Span control). This measurement produces a similar result to the Zero-Span measurement of a swept-IF spectrum analyzer.


The displayed oscilloscope-like signal can help you to identify a signal type. For example, GSM transmitters (both base station and mobile units) transmit 576 µs-duration bursts in one of eight slots during a 4.61 ms frame, within an approximately 200 kHz bandwidth. If the waveform bursts and framing meet GSM timing characteristics, then that signal is most likely a GSM signal.

Display an Amplitude vs. Time Measurement


- 1. Display a spectrum signal of interest. (See page 31, *Display a Spectrum Signal*.)
- 2. Tap the Select Measurement Display button and select the Amplitude vs. Time measurement. (See page 29, Select a Measurement Type.)
- Use the controls in the Time Domain drawer to set the display Vertical Scale, the Marker-To button actions, and the active waveform trace type.

- Tap the More button in the Time Domain drawer to display the spectrum parameter tabs.
- **5.** Tap a tab to display the parameters set by that tab.
- 5. Tap the **Help** (question mark) button on a tab to display online help for that tab.
- 7. Tap the **Close** (**X**) button on a tab to close the tab display and return the instrument to a full-screen display mode.

- **8.** Use the **Zoom** and **Pan Display** buttons to display a waveform segment of interest.
- **9.** Tap the **Display Markers** button and use markers to measure time differences between points on the waveform.

IF Output

The H600 can down-convert the RF input signal to an intermediate frequency and send it to the IF OUT connector. You can then connect the IF signal to other test equipment, such as an oscilloscope or demodulator, for further analysis.

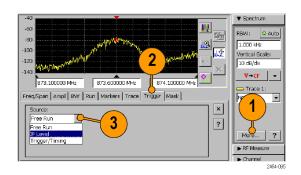
- 1. Select Setup > Outputs.
- 2. Tap Enable IF Output.
- 3. Tap **OK**.

NOTE. Enabling the IF output signal results in the instrument measurements being uncalibrated. The instrument displays a warning message and also displays the UNCAL button while IF output is enabled. To restore the instrument to taking calibrated measurements, clear the **Enable IF Output** check box in the **Outputs** dialog.

See the online help topic *The Outputs Dialog Box*, as well as the *General Performance Characteristics* table in the *Specifications* section, for more information. (See Table 1 on page 87.)

IF Output Tips

- The IF output signal is only enabled when Spectrum or Amplitude vs. Time measurements are selected. The output is disabled when other measurements are selected, even if the control setting is selected (checked). Reselecting a Spectrum or Amplitude vs. Time measurement reenables the IF Output signal.
- The IF output signal is unavailable when taking Spectrum measurements that require multiple acquisitions. Multiple acquisitions occur when the span is greater than 20 MHz, and can occur for some combinations of manually set RBW. To ensure an IF output signal, set the measurement span to be ≤20 MHz and set the RBW to Auto.
- Enabling the IF output signal results in the instrument measurements being uncalibrated. The instrument displays a warning message and also displays the UNCAL button while IF output is enabled. To restore the instrument to taking calibrated measurements, clear the Enable IF Output check box in the Outputs dialog box.
- The nominal IF out frequency is 140 MHz. The instrument displays the exact IF output frequency on screen when IF output is enabled. This is the frequency to which the RF center frequency is converted.
- **The IF OUT connector has a nominal impedance of 50 \Omega.**


Triggering

You can set a number of trigger parameters including the trigger source, signal type, signal threshold value, as well as set a trigger delay and position of the trigger point in the acquisition record.

- Tap the More button in the Spectrum or Time Domain drawer.
- Tap the Trigger tab.
- 3. Tap the Source list button and select IF Level or Trigger/Timing. The Trigger/Timing setting requires a TTL-level trigger signal at the Trigger/Timing connector.

To turn triggering off, select **Free Run** from the **Source** list.

- Set the trigger Type, Threshold value, Delay and Position parameters. Note that Position is only available when in Amplitude vs. Time measurement mode.
- Tap the Force Trigger button to force a signal acquisition regardless of the trigger settings.

Triggering Tips

- After arming, the instrument continuously acquires signal data until the trigger event. The trigger event determines when the acquisition stops. Trigger Delay and Position settings control the position of the acquisition record relative to the trigger event, allowing signal data capture both before and after the trigger event.
- Trigger modes interact with the spectrum Run mode (Spectrum Run tab). If the Run mode is set to Continuous, the instrument continuously rearms the trigger and reaquires signals if the trigger condition reoccurs. To obtain a single measurement acquisition after a trigger event, set the Run mode to Single.
- A trigger icon, located at the top of the display graticule, shows the position of the trigger event on the waveform when IF Level or Trigger/Timing trigger source is selected. The trigger icon is not shown when the instrument is in Free Run trigger mode.
- In Spectrum-based measurements, IF level triggering can occur even when no part of the displayed waveform reaches the specified trigger threshold level. This happens because trigger level detection is done on the total signal power in the span bandwidth, while the displayed spectrum waveform shows the signal power divided into RBW intervals across the span. For modulated signals with bandwidths wider than the RBW setting, the signal spectrum power level in any RBW interval is lower than the total signal power detected by the trigger system.
- Certain settings or combinations of settings can disable External triggering. When triggering is disabled, the instrument displays a yellow highlighted notification message for a short period and disables the Trigger tab controls. Changing the settings to those that allow triggering enables the Trigger tab controls. The following are the most common causes of disabled triggering:
 - Setting Span greater than 20 MHz
 - Setting any combination of Span and Resolution BW (RBW) that requires multiple signal acquisitions to take a measurement
 - Selecting DPX, Audio Demod, or Signal Strength measurement modes (including Signal Classification Audio Demod mode)
- See the Specifications section for more information on the Trigger/Timing external trigger requirements. (See Table 1 on page 87.)

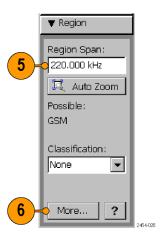
Signal Classification

Signal Classification helps you determine the various parameters of an unidentified signal. Signal Classification lets you:

- Define areas of interest as regions (center frequency and frequency span) anywhere on the signal (See page 48, Define a Signal Classification Region.)
- Analyze and compare unknown signals to known signal standards (See page 54, Spectral Correlation.)
- Assign classification labels and notes to regions (See page 58, Declare a Region (Classification).)
- Save all defined regions to a region survey file (See page 61, Save and Load Region Surveys.)

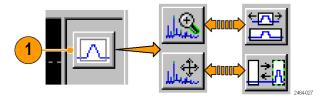
Define a Signal Classification Region

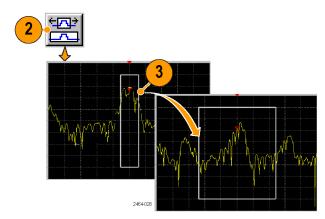
- 1. Tap the **Signal Classification** button.
- 2. Display a spectrum signal of interest.


3. Tap the region **Add** button.

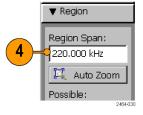
4. Tap and drag horizontally on the screen to define the span of a region. The instrument draws a box to indicate the region span frequency. The amplitude portion of the signal does not need to be totally enclosed in the region box.

- **5.** Tap the **Region Span** field to enter a precise frequency span of the region.
- Tap the More button to display the parameter tabs to make additional region settings, such as setting the signal type.




NOTE. A maximum of two regions can overlap the same measurement frequency. If you define a new region that covers a frequency range already contained within two other regions, the instrument displays a warning message and the region definition box is drawn with a thin red line. Tap the **Delete** button to delete the invalid region, or use the Change Span or Move Region buttons to change the span definition. You cannot do any more region tasks until you correct the invalid region definition. (See page 51, Edit a Signal Classification Region.)

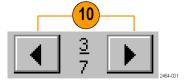
Edit a Signal Classification Region


- Tap the Edit Region button to switch the Zoom and Move buttons with Change Region and Move Region buttons. This button is only shown while in the Signal Classification mode.
- 2. To change the width (frequency span) if a region, tap the **Change Span** button.
- 3. Tap the region to change. Then press and drag, with firm pressure, inside the region box to change the span of the region in the direction of the drag. Dragging from the center to outside of the box expands the region; dragging from the edge of the box towards the center reduces the region. Use a stylus to make tapping and dragging easier.

You can only move an undeclared region (Classification = None).

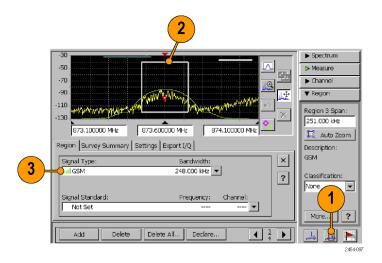
 You can also tap the Region Span field in the Region drawer to enter a specific frequency span for the region.

- **5.** To move a region, tap the **Move Region** button.
- 6. Tap the region to move. Then press and drag, with firm pressure, anywhere inside the region box to move the region in the direction of the drag. Use a stylus to make tapping and dragging easier.

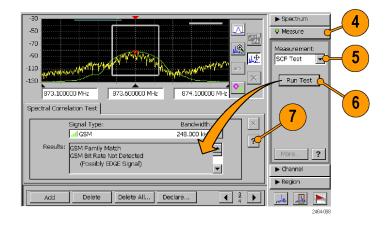

You can only move an undeclared region (Classification = None).

- Tap the Region Add button to define a new region on the signal.
- **8.** Tap the Region **Delete** button to delete the current selected region.
- Tap the Region Delete All button to delete all defined regions from the signal.
- 10. Tap the Previous Region or Next Region arrow buttons to display and select the previous or next defined region on the signal. The region order is based on the region measurement frequency (from left to right on the waveform), not in the order that they were created. If the region is off the screen, the instrument displays the region.

The numbers indicate the current region (top number) and the total number of regions (bottom number). Regions are listed from the lowest frequency (left end of signal) to highest frequency. As regions are added or deleted, the number assigned to a particular region may change.

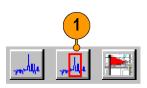

Spectral Correlation

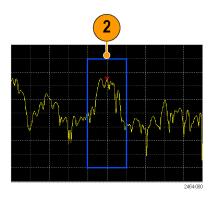
Spectral Correlation (SC) is an analysis tool that can help you identify an unknown signal. The Spectral Correlation Test analyzes the signal characteristics (carrier frequency, bit rate, symbol rate, chip rate, frame rate, slot rate, and so on) in two narrow subbands of the signal region of interest and compares them to the typical characteristics of a selected signal type. The closer the characteristics match, the more likely it is that the signal of interest is related to the specified signal type. The Spectral Correlation Plot shows all the spectral correlation analysis information unconstrained by signal type.


Test Signal Spectral Correlation.

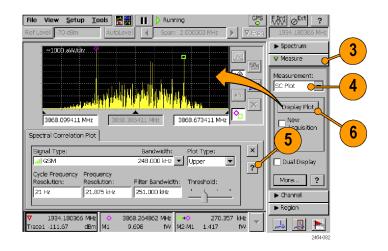
- 1. Tap the Signal Classification button.
- 2. Select or define a region.
- 3. Tap the Signal Type field and select a signal type. You can select any signal type, but not all signal types have an associated Spectral Correlation Test available. If you select a signal type and the Run Test button in the Measure drawer remains grayed out, then you cannot do a SCF test to compare the region waveform to the selected signal type.

Signal types that have a bandwidth close to the region span are marked with bar icons to indicate match relevance.


- 4. Tap the Measure drawer button.
- Tap the Measurement list and select SCF Test.
- Tap the Run Test button. The instrument analyzes the signal and displays results in the Results field.
- 7. Tap the **Help** button to access online help about the Spectral Correlation Test results.

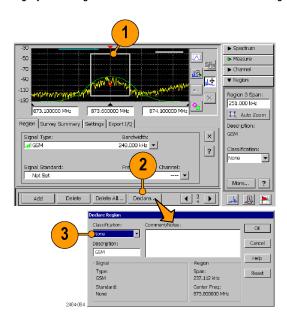


NOTE. The **Run Test** button is not available if the instrument is not running (paused state), the selected signal type does not support spectral correlation analysis, or there is no active (selected) region.


Plot Signal Spectral Correlation. The Spectral Correlation Plot measurement provides a visual study of a spectral correlation analysis applied to a signal of interest. The plot shows peak values at discrete cycle frequencies. You can measure absolute and relative locations of these cycle frequencies which often are uniquely representative of a specific signal type.

- 1. Tap the **Signal Classification** button.
- 2. Select or define a region.

- 3. Tap the Measure drawer button.
- 4. Tap the **Measurement** list and select **SCF Plot**.
- 5. Tap the Help button to display online help about the Spectral Correlation Plot tab parameters. Use the fields to set the plot parameters. The Filter Bandwidth field value is set from the region span value.
- Tap the **Display Plot** button to display the SC plot.



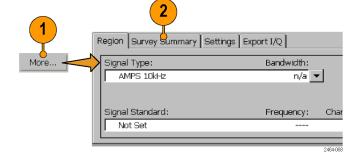
NOTE. The **Display Plot** button is not available when the instrument is not running (paused state) or there is no active (selected) region.

Declare a Region (Classification)

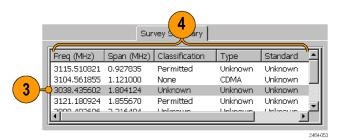
Declaring a region lets you assign a classification category to the region and add additional notes about the region or signal.

- 1. Select or define a region.
- 2. Tap the **Declare** button to open the Declare Region dialog box.
- 3. Tap the Classification list and select an appropriate classification. Assigning a classification type also assigns a color to the region box to let you quickly identify the classification of a declared region.

- 4. Tap the Description field to enter a brief description up to 14 characters long. The default value for this field is the signal type as set in the Region tab, but you can change the default value if desired. To enter characters, use the WindowsCE Inputs Panel on-screen keyboard control or a keyboard connected to the instrument PS2 port. (See page 25, Parameter Entry Controls.)
- Tap the Comments/Notes field and enter descriptive details. You can enter a maximum of 255 characters.
- **6.** Tap **OK** to close the dialog box and assign the declaration to the region.



NOTE. Once a region is classified, you need to reclassify it to **None** to make any changes to that region declaration. Use the **Declare** button, or the **Classification** field in the **Region** drawer, to change the region classification.


The Survey Summary

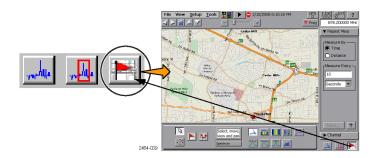
The Survey Summary list shows all defined (declared or undeclared) regions, and lets you quickly select and display specific regions.

- 1. Tap the **More** button in the **Region** drawer to open the Region settings tabs.
- 2. Tap the Survey Summary tab.

- **3.** Tap on an entry in the list to select and display that region.
- **4.** Tap on any of the column headings to sort the list entries by the values in that column, in ascending order.

Save and Load Region Surveys

A region survey is the set of all defined regions on the current signal, as listed in the Survey Summary tab. You can save region surveys to a file, and then load a region survey to merge with or replace your current region definitions.


- File > Save Survey: saves all defined regions to a system-default file name and location. This function saves the region definitions only.
- File > Save Survey As: saves all defined regions to a specified file name and location. This function saves the region definitions only.
- File > Load Survey: loads a region survey from a file. Follow the on-screen instructions to replace or merge your current region definitions with those from the file.
- File > Load Survey from Results: loads region definitions that are part of a saved signal classification results file (File > Save Results). Follow the on-screen instructions to replace or merge your current region definitions with those from the file.

iMap Measurement Mapping Mode

iMap integrates interference mapping, coverage mapping, in-building mapping, outdoor mapping, and provides an integrated solution for field interference and coverage problems in one instrument.

Using iMap is as easy as selecting a measurement and touching the displayed map where you want the measurement to be placed. Measurement icons are color coded to indicate if the measurements have passed or failed limit tests. You can also add a direction arrow to a measurement to indicate the direction the antenna was pointing when you took a measurement.

To start the iMap tool, tap the **iMap** button. When you open the iMap tool for the first time, the screen displays the message **Empty map**. Otherwise, iMap displays the last-loaded map.

You can load scanned bitmap files as maps for in-building mapping, or use GSF and MIF map file formats for outdoor maps. Using GSF or MIF map files lets you use the built-in GPS receiver to automatically place measurements at your current location.

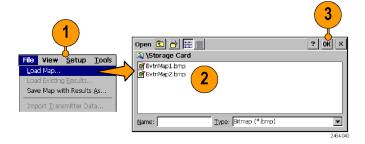
You can save maps and associated measurement results data to common file formats such as CSV or MapInfo. Saving maps and measurement results lets you analyze measurement data (position, value, and direction) and prepare reports.

Map File Concepts

The iMap tool uses two types of maps: Grid and Image.

Grid Maps. Grid maps have geophysical latitude and longitude coordinate references embedded in the map file. The instrument uses grid maps, along with an active GPS receiver, to place measurements on a map at your current geophysical position. Grid maps require specialized PC software to create or can be purchased from map-creating companies. The instrument can load both GSF- and MIF-format grid map files. You need to convert non-GSF or MIF grid maps to GSF format before you can load them into the iMap tool.

Grid maps require an active GPS receiver to correctly link measurements to geophysical map locations. An active GPS receiver is a receiver that is locked to four or more satellite signals and is providing the instrument with accurate GPS location data. If you load a grid map and a GPS receiver is either not connected or does not have a good satellite signal lock, the instrument considers the grid map as an image map.


Image Maps. Image maps do not have any geophysical latitude and longitude references embedded in the map file. An image map is a graphical image, such as a scanned building floor plan or aerial photograph, to which you can attach measurements at the point that you tap the screen.

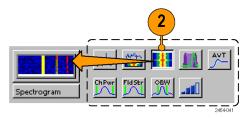
Converting Files to Maps. The iMap Converter, a program that is downloadable from the Tektronix Web site, lets you convert and save image files (BMP, JPEG, GIF, TIFF or PNG file) into GSF format image map files, convert image maps to grid maps, and create grid maps from Google Earth or Microsoft MapPoint applications. (See page 76, *The iMap Converter Program.*)

Loading a Map

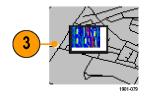
You need to load a map before you can use the iMap tool. If a map was loaded in a previous session, then that map remains loaded until you load a new map file.

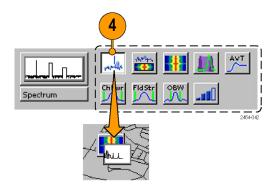
- With iMap open, select File > Load Map.
- Navigate to and select the map file to load (Bitmap, GSF, MIF, or ZIP (map with results) format).
- **3.** Tap **OK**. The iMap application loads the map on the screen.

Mapping a Measurement


The following procedure requires that you have already set up the measurement. You must have also loaded a map file. (See page 64, *Loading a Map.*)

1. Tap the Single Measurement button.


2. Tap an iMap measurement button.


Available measurements depend on the current signal standard. The selected measurement is displayed in the Measurement Thumbnail area.

3. Tap the map:

- If a GPS receiver is active, and you are using a grid map, a single measurement is placed at the current GPS coordinates.
- If a GPS receiver is not active, or if you are using an image map (such as a building floor plan), a single measurement is placed where you tapped the map.
- 4. You can select a different measurement button, and then tap the map to add a new measurement to the map. Multiple measurement icons at the same location stack on top of each other.

5. To move an icon, tap the Select button and then tap and drag the icon to a new position. If the measurement was part of a stack of measurements (such as created by logging), then iMap moves the topmost icon in the stack. If the icon is moved to a new stack of measurements, then the icon is placed in the stack in time-of-measurement order.

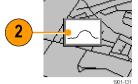
NOTE. To add measurements at a new location on a grid map with an active GPS receiver, you must physically move to the new location.

NOTE. You can move measurement icons on an image map, or on a grid map with the GPS receiver inactive. Attempting to move an icon on a grid map with an active GPS receiver causes iMap to drag the map and its measurement icons to a new position on the screen; the measurement icons are not moved.

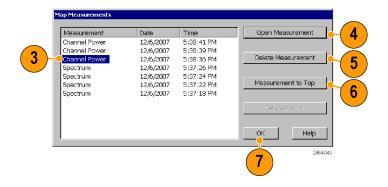
When a GPS receiver is not active, you can move any measurement icon. This includes moving measurement icons that were placed on the map while in GPS mode. iMap does not reposition moved GPS-related measurement icons back to their original geophysical position on a map when the GPS receiver is active.

iMap Measurement Icons

The iMap application uses icons on the map to represent a measurement taken at that location. There are two types of measurement icons: large and flag. The large icon displays the type of measurement that they represent. The flag icon is a simple small flag, and is used only in logging (multiple) measurement mode to indicate measurement placement. See the online help topic iMap Measurement Map Icon Types for more information.


You can perform various actions on measurement icons, including viewing the measurement results of an icon, moving the icon, deleting an icon, and attaching a measurement direction arrow to an icon. See the following sections, and the online help topic *View Map Measurements*, for more information.

Viewing and Deleting Icon Measurements

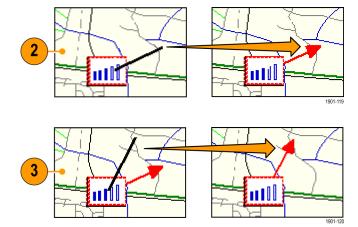

To view or delete the measurement results associated with an iMap measurement icon:

- 1. Tap the iMap Select mode button.
- 2. Tap a measurement icon to open the Map Measurements dialog box.

- 3. Tap the measurement of interest in the list.
- Tap Open Measurement to open the measurement screen for the selected measurement. Tap the iMap button to return to the iMap screen.
- Tap the Delete Measurement button to delete the selected measurement. If there are multiple measurements to delete, repeatedly select and tap Delete.
- **6.** Tap **Measurement to Top** to move a selected measurement to the top of the list.
- 7. Tap **OK** to close the dialog box.

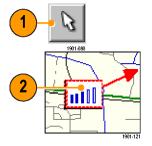
NOTE. You can also double-tap on a measurement icon to open the measurement window for that measurement. If there are multiple measurements at a location, double-tapping an icon displays the results for the measurement icon that is at the top of the list.

To delete all the measurement icons from a map, select File > Clear All Measurements.

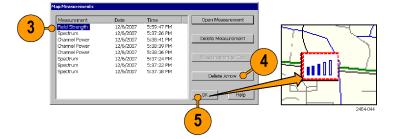

Draw a Measurement Direction Arrow

The iMap direction arrow function lets you draw an arrow on a mapped measurement icon. You can use the arrow to indicate the direction your antenna was pointing when you took a measurement.

1. Tap the Measurement Direction button.



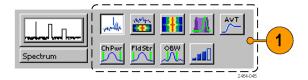
- 2. Tap and drag from the center of a measurement icon in the direction the antenna was pointing when the measurement was made. iMap draws an arrow from the measurement icon.
- 3. To change the arrow direction, draw a new line. iMap replaces the existing arrow with the new direction arrow.



Delete a Measurement Direction Arrow.

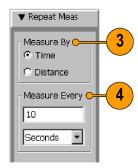
- 1. Tap the iMap Select mode button.
- Single-tap the measurement icon with the direction arrow to delete. iMap opens the Map Measurements dialog box.

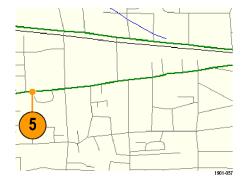
- 3. Tap the measurement name that has the direction arrow to delete.
- 4. Tap the **Delete Arrow** button.
- Tap **OK**. iMap closes the dialog box and deletes the direction arrow.

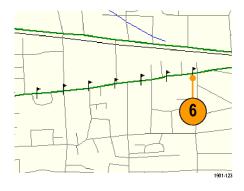


Logging iMap Measurements (Automatic Measurements)

Logging measurements lets you automatically map a single measurement at a set time interval or change in GPS position (with active GPS receiver and a grid map).


NOTE. The iMap tool maps only completed measurement results. If the specified time interval is less than that required to take a measurement, iMap ignores the specified time interval and maps results as soon as the measurement acquisition is done. For example, if the instrument requires 20 seconds to take a measurement, but the time interval is set to 10 seconds, then the instrument maps results every 20 seconds.


1. Set up the measurement parameters (frequency, bandwidth, and so on) and then tap the measurement to log.


- 2. Tap the Log Measurements button.
- Tap a button in the Measure By area to set the type of measurement interval (time interval or distance between measurement positions). Distance is only available when the GPS is active and acquiring accurate position data.
- 4. Tap a field in the **Measure Every** area to set the measurement interval.
- 5. Tap the map to start logging measurements:
 - For grid maps with an active GPS receiver, tap the map at any point. The instrument adds measurement flags to the map at the current GPS position.
 - For image maps or for grid maps without an active GPS receiver, tap the map at the measurement starting location. The instrument begins taking measurements, but does not display them on the map until measurement logging is done.

- 6. Tap the map to stop measurements:
 - For grid maps with an active GPS receiver, tap the map at any position.
 The instrument stops mapping measurements.
 - For image maps or grid maps without an active GPS receiver, tap the map at the position the last measurement was taken. Measurements are then evenly spaced on a straight line between the start and stop map points.
- 7. Tap the **Single Measurement** or the **Select** button to exit the logging measurements mode.

NOTE. The iMap Log measurements function automatically sets the map view measurements mode to **Measurement Flags** during logging measurement acquisition. When iMap measurement logging is done, the instrument restores the map view measurements mode to the mode it was at before the iMap measurement logging was initiated.

If you tap the **Select, Measurement Direction**, or **Single Measurement** button while logging measurements in non-GPS mode, iMap cancels the log measurements mode and does not draw any measurement icons on the map.

Grid maps with an active GPS receiver support logging measurements by time interval or distance change interval. Image maps, or grid maps with an inactive GPS receiver, support logging measurements by time intervals.

You cannot place a measurement icon on any area of the map that is covered by a message banner.

The iMap Converter Program

Tektronix provides a map file conversion program called iMap Converter that you can download from the Tektronix Web site. iMap Converter lets you convert graphical image files or map files for use with the instrument iMap tool. Types of images or files that you can convert include:

- BMP, JPEG, GIF, TIFF and PNG graphical images (map images, building floor plans, aerial photographs)
- Industry standard MapInfo Interchange Format (MIF), ArcInfo Shape (.shp), USGS Digital Line Graph (.opt) geophysical coordinate maps

Other iMap Converter features include:

- Easily capture images from Google Earth or Microsoft MapPoint to create geophysical (coordinate) map files for use with GPS measurement mapping
- Manually assign geophysical coordinates (latitude/longitude) to image files, such as building floor plans or screen capture map images, to create a grid map for use with GPS measurement plotting
- Combine multiple coordinate map files into a single large map file

To install the iMap Converter program on a PC

- 1. Go to the Tektronix Web site (www.tektronix.com).
- 2. Click Software Downloads on the left side of the screen to open the Software Downloads Web page.
- 3. Enter imapconverter (single word) in the Search by keyword field and click Go.
- 4. Select the iMap Converter link to download the software. Follow the installation instructions on the download page.

- To open the iMap Converter tool on the PC, select Start > Programs > Tektronix > iMapConverter.
- 6. Click the iMap Converter **Help** button for information on how to use the tool to convert files, add coordinates to an image file, or create maps from Google Earth or Microsoft MapPoint.

NOTE. Bitmap files that are converted to GSF-format load faster on the instrument because the instrument does not have to do the bitmap-to-GSF conversion in the instrument. However, it is then possible to confuse image GSF maps with grid (coordinate) GSF files. Use a file naming convention to differentiate between GSF maps created from coordinate maps and GSF maps created from bitmap files that do not have coordinate information.

NOTE. The MIF-format files take significantly longer to load than the GSF-format files. Tektronix recommends that you use iMap Converter to convert MIF map files to GSF map files, rather than loading MIF files directly on the instrument.

Remote Instrument Access

Remote instrument access lets you:

- Remotely control the instrument from a PC (directly or through a network)
- Transfer data, measurement, setup, map, and other files to and from the instrument
- Print measurement data and screen shots to a network printer

The two remote access methods are Ethernet and ActiveSync. An Ethernet connection is much faster than a ActiveSync connection but the ActiveSync connection is better for instrument-to-PC file interchange. Each access method requires unique configuration steps, which are described in the following sections.

Configure the Instrument Network Settings

- Work with your network administrator to determine the IP address of the H600 RFHawk instrument. If the network has DHCP enabled, the instrument will automatically obtain an IP address when powered on and connected to the network. If your network does not support DHCP, or you need a fixed IP address for your instrument, have your system administrator provide you with an address.
- Connect a standard Ethernet cable from the instrument to a network connector. You can do this before or after powering on the instrument.
- On the instrument, tap Start > Settings > Network and Dial-up Connections. The instrument network interface is listed as ENDS4ISA1.

- 4. Double-tap the ENDS4ISA1 icon to open CSA8900 Settings dialog box:
 - If your instrument is using DHCP to obtain an IP address, and the Obtain an IP address via DHCP button is set, you do not need any further network configuration. Close the dialog box.
 - If the instrument has already been assigned a fixed IP address, the address fields should show the address information.
 If you are assigning or changing the instrument fixed IP address, tap the Specify an IP address button and enter the appropriate address settings and then tap OK.
- 5. Close the **Network Connections** window.
- 6. On the instrument, tap Start > Programs > Communication > Virtual CE to open the Virtual CE application.
- Tap Configure and select WAN/Internet or LAN from the list. If you need added security for network access from the instrument, set the Require a password for LAN check box and enter a password.

You can now use the network functions to remotely control the instrument, access network files or print to a network printer.

Network Functions

- Use Virtual CE to remotely control the instrument over the network from a PC. (See page 83, Remote Control Using Virtual CE.)
- Mount sharable network drives that the instrument can access to upload or download files. For example, double-tap the My Device icon on the main instrument screen on the desktop. Then enter the full path to the network drive in the Address field. You may be prompted for a user name, password, and domain name.

- Redirect printer output to a network printer. For example, select File > Print on the instrument to print the current measurement screen. Select PCL Laser in the Printer field, Network in the Port field, and the path to the network printer in the Net Path field. You may be prompted for a user name, password, and domain name.
- Access the Web from the instrument Web browser (Start > Programs > Internet Explorer). This is a simplified version of Microsoft Internet Explorer, so it does not have all the capabilities of that of the PC Internet Explorer.

Configure the Instrument ActiveSync Settings

NOTE. An ActiveSync connection to the instrument is available on Microsoft Windows 2000 and XP. An ActiveSync connection to the instrument is not available on Microsoft Windows Vista.

- 1. On the instrument, tap **Start > Programs > Communication > Virtual CE** to open the Virtual CE application.
- Tap Configure. Select ActiveSync from the list and then tap OK.
- 3. Close the Virtual CE window.
- 4. Tap Start > Settings > Control Panel > PC Connection. Verify that Allow connection with desktop computer when device is attached is selected, and that Connect using is set to USB Default. Then exit the dialog box.

You can now configure the ActiveSync settings on the PC and use the ActiveSync connection functions to remotely control the instrument and access instrument files. (See page 81, Configure ActiveSync on the PC.)

ActiveSync Connection Functions

- Use Virtual CE to remotely control the instrument over a USB cable from a PC. (See page 83, Remote Control Using Virtual CE.)
- Use the ActiveSync Explorer button to open a Windows Explorer window. You can then use standard Windows operations to copy or move files between the instrument and the PC. Copying files between the instrument and a PC is significantly easier using ActiveSync than using a network connection.

Configure ActiveSync on the PC

Register the Instrument USB port

The PC must register the H600 USB port as a valid slave port before you can establish an ActiveSync connection from the instrument to the PC. You only need to register the instrument USB slave port once on each PC to use the USB port for ActiveSync connections.

- 1. Use your Web browser to go to www.tektronix.com/software.
- 2. Enter h600 usb in the Search by keyword field.
- 3. Click the USB SLAVE DEVICE PC REGISTRATION UTILITY > Software Downloads link, then click on the Download File link.
- 4. Log in to the myTek software finder and follow on-screen instructions to register/log in and download the USB slave device utility to a PC.

- 5. Unzip the downloaded file and double-click the **RegisterUSBSlaveDevice.exe** file. Follow any on-screen instructions.
- **6.** To complete the USB port registration process, power on the H600 RFHawk and install a USB cable between the PC and the instrument. Typically, the PC opens a "Found New Hardware Wizard" dialog box. Step through the dialog boxes and, if prompted, select to install the SW automatically. Verify that the installation process completes without error. You only need to run this step one time after running the USB port registration tool.

Install and Configure Microsoft ActiveSync

USB connectivity requires Microsoft ActiveSync (version 3.7 through 4.5). If your PC does not have the correct version of ActiveSync installed, do the following:

- 1. Use your Web browser to go to the Microsoft Web site and locate the ActiveSync software download page.
- Select ActiveSync version 4.5 and follow instructions on how to install the software. You may need to reboot your PC after installing ActiveSync.
- Right-click on the ActiveSync icon in the PC task bar and select Connection Settings. Verify the following settings before clicking OK:
 - Allow USB Connections is selected
 - Allow connections to one of the following: is not selected (cleared)
 - This computer is connected to: is set to Automatic
 - Open ActiveSync when my device connects is selected

Establish an ActiveSync Connection

- 1. Power on the H600 RFHawk.
- 2. When the instrument startup procedure is done, connect a USB cable (Master to Slave cable type) between the PC and the instrument. Connect to the PC first, then to the instrument. The ActiveSync program on the PC detects the USB connection and connects to the instrument, as indicated by the ActiveSync icon in the PC taskbar.
- 3. To verify the ActiveSync connection, open the ActiveSync application and click **Explore** on the toolbar. ActiveSync opens a Windows Explorer dialog box that shows the top level of folders on the instrument. You can use the Windows Explorer to navigate to files on the instrument and select them for copying or moving.
- You can now also use Virtual CE to remotely control the instrument using the ActiveSync connection. (See page 83, Remote Control Using Virtual CE.)

Remote Control Using Virtual CE

Virtual CE is a program that gives you remote access to the H600 screen. You use the PC mouse to click on the virtual instrument screen controls to operate the remote instrument or access the instrument desktop. Virtual CE is already installed on the instrument; the following procedure is for installing Virtual CE on a PC.

Install and Configure Virtual CE on a PC

NOTE. The Virtual CE program on the H600 cannot interface directly over a USB cable, as there is no USB selection in the program's configuration list. However, the Virtual CE tool on the H600 does support an ActiveSync connection, which can use a USB cable.

The PC version of Virtual CE supports an ActiveSync connection. However, the ActiveSync selection in Virtual CE does not work from Microsoft Windows Vista. Therefore you can only use ActiveSync to interface with the instrument over a USB cable from Microsoft Windows 2000 or XP.

- Use your Web browser to go to www.tektronix.com/software.
- 2. Enter virtualce in the Search by keyword field.
- 3. Click the VIRTUALCE PC APPLICATION INSTALLATION FILE > Software Downloads link, then click on the Download File link
- 4. Follow the on-screen instructions to register/log in and download the Virtual CE utility.
- 5. Unzip the downloaded file and double-click the Install_VirtualCE.exe file. Follow any on-screen instructions.
- Select Start > Programs > Tektronix > Virtual CE > Virtual CE to start the program.
- 7. Click Configure and select the applicable connection type (LAN, WAN/Internet, or ActiveSync).

Run Virtual CE on the Instrument and PC

- 1. Make sure that you have a working Ethernet or ActiveSync/USB remote connection between the PC and the H600 instrument.
- 2. On the instrument, tap Start > Programs > Communication > Virtual CE. Tap the Configure button and verify that the applicable connection type is selected (LAN, WAN/Internet, or ActiveSync).
- 3. On the instrument, tap the Virtual CE button in the task bar at the bottom of the screen to minimize the Virtual CE screen.
- 4. On the PC, click Start > Programs > Tektronix > Virtual CE > Virtual CE. Click the Configure button and verify that it is set to the same type of connection as set in step 2. If you are using a network connection, verify that the IP address listed above the Configure button is correct. The PC Virtual CE should establish communications with the instrument and show the instrument screen in the Virtual CE window on the PC.
- 5. To use the H600 remote application control capability, on the PC start the RFHawk application in the Virtual CE window (if the application is not already running). The instrument starts the application and the VirtualCE window on the PC shows the application interface. You can now control all instrument functions from the PC by using the mouse to select and click on instrument controls.
- 6. To close the remote access, exit the Virtual CE application on both the instrument and the PC, in any order. Or unplug the Ethernet or USB cable from the instrument.

Specifications

This section lists the electrical, environmental, and physical specifications for the H600 RFHawk. All specifications are guaranteed unless labeled "Typical." Typical specifications are provided for your convenience and are not guaranteed.

Table 1: General Performance Characteristics

Characteristic	Description
RF Input	
Operating Frequency	10 kHz – 6.2 GHz
Range	Operating Range for some features may be restricted. If so, the restricted range is defined with the relevant feature.
Maximum Operating	+20 dBm peak envelope power
Input Level	This is the maximum input level at which the instrument will meet its performance specifications.
	For a signal without any amplitude variation, peak envelope power = RMS.
Maximum Input Power	50 W rms below 3.2 GHz
without Damage	15 W rms between 3.2 GHz and 6.2 GHz
IF Output	
Output Impedance	50 Ω
IF Center Frequency	140 MHz, non-inverted
IF 3 dB Bandwidth	24 MHz nominal

Table 1: General Performance Characteristics (cont.)

IF Output Level	 -12 dBm @ 1.0 GHz -12 dBm @ 1.2 GHz -10 dBm @ 1.6 GHz -11 dBm @ 4.35 GHz -16 dBm @ 5.0 GHz -22 dBm @ 5.75 GHz 0 dBm CW signal applied to the input, instrument reference level set to 0 dBm, room temperature.
IF Output Level Accuracy, Typical	± 3.5 dB for a CW input signal, 0 dBm input, 1 GHz input frequency, 0 dBm reference level, room temperature
IF Output Flatness, Typical	± 1.5 dB up to ± 3 MHz from center frequency ± 3 dB up to ± 10 MHz from center frequency
Internal Timebase	
Error, Factory Calibration Corrected	± 0.5 PPM from 0 °C to 50 °C ± 1.0 PPM aging/year Twenty minute warm-up period required to meet accuracy specification
Error, GPS corrected, Typical	± (10 Hz + 0.01 ppm)
External Reference Input	
Impedance	1500 Ω
Frequency Range	1 MHz up to 20 MHz ± 1 PPM in 1 MHz steps

Table 1: General Performance Characteristics (cont.)

Input Level Range	–15 dBm to +15 dBm, 1 MHz to 15 MHz
	–10 dBm to +15 dBm, 16 MHz to 20 MHz
	dBm levels assume 50 Ω source
Trigger	
Timing/Trigger	Impedance: 10 kΩ
External Trigger Input	Minimum High Threshold: 2.0 V
Characteristics	Maximum Low Threshold: 0.8 V
	Minimum High Time: 10 ns
	Minimum Low Time: 10 ns
	Maximum Input Level without Damage: ±5 V peak continuous
	Coupling: DC
Acquisition Mode	Single or Continuous, Free Run or Triggered
	Trigger disabled during Audio Demod, Signal Strength, and DPX measurements
Trigger Source	IF Level or Timing/Trigger Input
Trigger Types	Trigger on rising edge, falling edge, above threshold level, or below threshold level
Trigger Delay	Range: 0 to 60 seconds
	Resolution: 1 μs
Trigger Position	Range: 0 to 100%
	Resolution: 1%
IF Level Trigger	The IF Level trigger compares the digitized time-domain data-stream level against the threshold level setting.

Table 1: General Performance Characteristics (cont.)

Trigger Threshold	Range: -160 dBm to +20 dBm
	Resolution: 1 dB
Trigger Bandwidth Range	5 kHz to 20 MHz in 1-2-5 sequence 10 MHz < Span ≤ 20 MHz: trigger BW = 20 MHz 5 MHz < Span ≤ 10 MHz: trigger BW = 10 MHz 2 MHz < Span ≤ 5 MHz: trigger BW = 5 MHz 1 MHz < Span ≤ 2 MHz: trigger BW = 2 MHz 500 kHz < Span ≤ 1 MHz: trigger BW = 1 MHz 200 kHz < Span ≤ 500 kHz: trigger BW = 500 kHz 100 kHz < Span ≤ 200 kHz: trigger BW = 200 kHz 50 kHz < Span ≤ 200 kHz: trigger BW = 100 kHz 20 kHz < Span ≤ 100 kHz: trigger BW = 100 kHz 20 kHz < Span ≤ 50 kHz: trigger BW = 50 kHz 10 kHz < Span ≤ 20 kHz: trigger BW = 20 kHz 5 kHz < Span ≤ 10 kHz: trigger BW = 10 kHz 2.5 kHz < Span ≤ 5 kHz: trigger BW = 5 kHz Spectrum mode only: Span ≤ 2.5 kHz: trigger BW = 2.5 kHz

Table 2: Spectrum Analyzer Characteristics

Characteristic	Description
Center Frequency	
Range	10 kHz to 6.2 GHz, preamp off
	10 MHz to 6.2 GHz, preamp on

Table 2: Spectrum Analyzer Characteristics (cont.)

Setting Resolution	1 Hz
	1112
Span	
Range	1 kHz to 6.2 GHz
Setting Resolution	1 Hz
Resolution Bandwidth	
Range	10 Hz to 3 MHz (Manual RBW) 10 Hz to 1 MHz (Auto RBW)
Setting Resolution	1 Hz
Spectral Purity	
Displayed Average Noise Level, Preamp On	-153 dBm, 10 MHz to 2 GHz, 10 Hz RBW -152 dBm, 2 GHz to 4 GHz, 10 Hz RBW -151 dBm, 4 to 5 GHz, 10 Hz RBW -145 dBm, 5 to 6.2 GHz, 10 Hz RBW Reference Level ≤ (DANL + 90 dB)
Phase Noise	\leq -95 dBc/Hz @ 10 kHz offset \leq -95 dBc/Hz @ 20 kHz offset \leq -95 dBc/Hz @ 30 kHz offset \leq -97 dBc/Hz @ 100 kHz offset \leq -110 dBc/Hz @ 1 MHz offset

Table 2: Spectrum Analyzer Characteristics (cont.)

Residual Spurious, Preamp Off	≤ –90 dBm, 0 dBm attenuator setting
	Exception frequencies: 9 MHz to 19 MHz center frequency 3464 MHz center frequency 4592 MHz center frequency 5374 MHz to 5378 MHz center frequency 6160 MHz center frequency
Residual Spurious,	≤ –105 dBm, 0 dBm attenuator setting
Preamp On	Exception frequencies: 9 MHz to 19 MHz center frequency 5374 MHz to 5378 MHz center frequency
Third Order IMD	≤ -70 dBc for two tones at or below the reference level, preamp off, all gain settings Auto-coupled
Second Harmonic	≤ –60 dBc for a single tone at or below the reference level, preamp off, all gain settings Auto-coupled
Input Related	≤–70 dBc except for F _{in} = 2.282 GHz ± 20 MHz
Spurious	The reference for 'dBc' for this specification is the total power of all signals present at the input of the instrument regardless of the current span
Input Related	\leq -55 dBc except for F _{in} = 2.282 GHz \pm 20 MHz
Spurious, exception frequencies, Typical	The reference for "dBc" for this specification is the total power of all signals present at the input of the instrument regardless of the current span
Third Order Intercept	≥ +7 dBm, 0 dB Input Attenuation, Preamp Off

Table 2: Spectrum Analyzer Characteristics (cont.)

pectral Display Amplitud	e
Reference Level Range and Units	Range: +20 dBm to -160 dBm
	Units: dBm, dBmV, dBuV, dBV, dBW, V, W
Marker Power	±1.75 dB, -50 dBm ≤ input ≤ +20 dBm, preamp off
Accuracy	±3.0 dB, −80 dBm ≤ input < −50 dBm, preamp on, above 10 MHz
	±3.75 dB, −120 dBm ≤ input < −80 dBm, preamp on, above 10 MHz
	Use peak detector for CW-like signals; use average detector for wideband (signal >> RBW)
	Accuracy guaranteed for CW signals and span set to 20 MHz or less
isplay	
Display Modes	Normal - updates display with each new result Max Hold - updates displayed point only if new point > old Min Hold - updates displayed point only if new point < old Max/Min Hold - displays a vertical bar between Max Hold and Min Hold Average - displays average of N (specified by user) acquisitions
	Average is calculated as follows:
	Last N values are saved in memory; when a new result is available, the earliest result of the N stored values is discarded, the new result is added to the stored values, and a new average is calculated from the stored values If the number of results is less than N, then all of the results are averaged together
Number of Averages	1 ≤ N ≤ 200

Table 3: DPX Measurement Processing Characteristics

Characteristic	Description
Spectrum Processing Rate, Typical	10,000 per second (span independent)
Minimum Signal Duration for 100% Probability of Intercept, Typical	125 μs
Span Range	5 kHz to 20 MHz
RBW Settings	RBW = Span/200

Table 4: General Purpose RF Measurements Characteristics

Characteristic	Description
General Purpose RF Cha	annel Power Measurement
Measurement Bandwidth Range	1 kHz – 20 MHz
Accuracy	\leq 1.2 dB; +20 dBm to −60 dBm; Resolution BW < 100 kHz +20 dBm to −40 dBm; Resolution BW \geq 100 kHz 1 MHz to 3.2 GHz , preamp off
	\leq 2 .4 dB; −60 dBm to −75 dBm; Resolution BW < 100 kHz −40 dBm to −55 dBm; Resolution BW \geq 100 kHz 10 MHz to 3.2 GHz , preamp on
	\leq 1.8 dB; +20 dBm to −50 dBm; Resolution BW < 100 kHz +20 dBm to −40 dBm; Resolution BW \geq 100 kHz 3.2 GHz to 6.2 GHz , preamp off
	\leq 3 dB; −50 dBm to −75 dBm; Resolution BW < 100 kHz −40 dBm to −55 dBm; Resolution BW \geq 100 kHz 3.2 GHz to 6.2 GHz , preamp on
	Specifications apply for default control settings (Auto RBW, Auto Level)
Occupied Bandwidth Me	easurement
Percent Power Inclusion Range	50% - 100% in 1% steps

Table 4: General Purpose RF Measurements Characteristics (cont.)

RF Field Strength		
Channel Bandwidth Range	Same as Channel Power	
Accuracy	Same as Channel Power	

Table 5: Amplitude vs. Time characteristics

Characteristic	Description
Center Frequency	
Range	Minimum center frequency = 10 kHz + Span / 2, preamp off
	Minimum center frequency = 10 MHz, preamp on
	Maximum center frequency = 6.2 GHz
Resolution	1 Hz
Span	
Range	5 kHz to 20 MHz in 1-2-5 sequence
	Sample rate is automatically set based on the span selection

Characteristic	Description
Acquisition Length	
Range	1024 to 1024000 samples
	36 µs to 149 seconds, depending on span and number of samples
	Span setting and number of samples selected determine the acquisition length
	Sample rate is automatically set based on span selection
Time Display Amplitude	
Reference Level Range and Units	+20 dBm to –160 dBm
	dBm, dBmV, dBuV, dBW, dBW, V, W
Marker Power Accuracy	±1.8 dB, -50 dBm ≤ input ≤ +20 dBm, preamp off
	± 3.0 dB, -75 dBm ≤ input < -40 dBm, preamp on, above 10 MHz
Display	
Detector Types	Average: One display point represents the average value of a group of data points +Peak: One display point represents the maximum value of a group of data points -Peak: One display point represents the minimum value of a group of data points +Peak/-Peak: One vertical bar represents the maximum and minimum values of a group of data points
Trace Types	Normal: updates display with each new result Max Hold: updates displayed point only if new point > old
	Min Hold: updates displayed point only if new point < old Max/Min Hold: displays a vertical bar between Max Hold and Min Hold Average: displays average of N (specified by user) acquisitions

Characteristic	Description
Number of Averages	1 ≤ N ≤ 200
Export I/Q Data	I/Q data from can be exported in the following formats: IQT: in-phase and quadrature phase data for post-processing with RSAVu CSV: comma-separated values in ASCII format MAT: Matlab®-compatible file format

Table 6: Signal Analysis and Monitoring Characteristics

Characteristic	Description
AM Demodulation	Provides an audio output signal after AM demodulation of the user-selected signal
Measurement Frequency	As previously selected
Minimum Input Signal Level, Typical	-100 dBm
Audio Measurement Bandwidth	8 kHz
FM Demodulation	Provides an audio output signal after FM demodulation of the user-selected signal
Measurement Frequency	As previously selected
Minimum Signal Level, Typical	-100 dBm

Table 6: Signal Analysis and Monitoring Characteristics (cont.)

Maximum Signal Deviation	Up to 100 kHz
Audio Measurement Bandwidth	8 kHz, 15 kHz, 75 kHz, or 200 kHz
Maximum Audio Output Bandwidth	15 kHz
Signal Strength Indicator	Provides both an audio tone and a visual display that are related to the strength of the user selected signal
Input Signal Level	-120 dBm, minimum
Measurement Frequency	As previously selected
Measurement Bandwidth	Up to 20 MHz, dependent upon span and RBW setting
Tone Type	Variable beep rate or variable frequency
Update Rate, Typical	10 per second

Table 7: Environmental characteristics

Characteristic	Description
Temperature	Operating: 0 °C to +50 °C specified performance, -10 °C to +50 °C, typical
	Nonoperating: -40 °C to +60 °C
	The temperature specs above are modified with the following options installed:
	Li-Ion Batteries: Charge 0 °C to +45 °C, Storage –20 °C to +60 °C
Humidity	Operating and Nonoperating: 5% to 95% relative humidity (RH) at up to +30 °C, 5% to 45% RH above +30 °C up to +50 °C, noncondensing
Altitude	Operating: Up to 4,600 meters (15,092 feet)
	Nonoperating: Up to 12,192 meters (40,000 feet)

Table 8: Physical characteristics

Characteristic	Description
Dimensions	Height: 25.5 cm. (10.0 in)
	Width: 33 cm. (13 in)
	Depth: 12.5 cm. (4.8 in)
Weight	6.0 kg (13.25 lbs): instrument and 1 battery

Table 9: Miscellaneous characteristics

Characteristic	Description
Recommended Instrument Calibration Interval	2 years

Help, 18

Index

Symbols and Numbers

iMap log measurements, 72 ? button. 26 iMap mapping mode, 24 B log measurements (iMap), 72 Battery measurement frequency, 20 charge status, 14 AC adapter requirements, 2 measurement mode buttons. 24 charge times, 7 measurement reference AC adapter, connecting, 6 charging, 7 frequency status, 18 AC/DC adapter connection, 13 compartment door location, 13 move display, 22 Accessories (standard), 1 installing, 4 move region, 22 Active GPS (definition), 63 Bitmap (DPX), 35 Pause, 18 ActiveSvnc Bitmap file (iMap), 63 power on/standby. 14 configure instrument settings, 80 BMP. 63 Ref Level, 20, 31 establish connection. 83 Button reset. 14 PC install and configure, 82 AutoLevel. 20. 31 reset measurement, 22 verify supported version, 82 change span, 22 RF input signal Adapter, AC, connecting, 6 display markers, 22 Add signal standards to selection gain/attenuation, 19 edit region, 22 lists, 27 Run. 18 F EXT, 18 signal classification mode. 24 Add signal types to selection lists, 28 F GPS. 18 span, 20 Altitude specifications, 2 F INT, 18 spectrogram, 22 Amplifier setting (RF input signal), 19 Freq, 31 spectrum measurement ArcInfo Shape (.shp) map file, 76 front trace, 22 mode, 24 Attenuator setting (RF input signal), 19 GPS status, 18 undo display action, 22 AutoLevel button, 20 help, 26

Automatic iMap measurements, 72

zoom display, 22	signal input/output, 16 TRIGGER/TIMING IN, 16 Conventions used in this manual, xv Converting maps to GSF, 76	Display a DPX spectrum, 36 Display a spectrogram, 33 Display markers button, 22 Displaying
Calibrate the touch screen, 9 Change spectrum frequency span, 31 Change span button, 22 Changing application screen colors for printing, 12 numbers in fields, 25 Charging the batteries, 7 Cleaning the instrument and touch-screen, 3 Color schemes (user interface), 12 Command bar, 17, 18 Concepts (touch screen), 9 Configure instrument network settings, 78 Connecting the AC adapter, 6 Connectors FREQ REF IN, 16 GPS, 16 IF OUT, 16 input & output, 15 RF IN, 16	D Declare declare a region, 58 None, 58 Permitted, 58 Unauthorized, 58 Unknown, 58 Declare a region (signal classification), 58 Define a signal classification region, 48 Definition active GPS receiver, 63 grid map, 63 image map, 63 Delete a direction arrow (iMap), 71 Delete measurement icons (iMap), 68 Dimensions, 2 Direction arrow, how to delete (iMap), 71	a spectrum waveform, 31 power on/off status, 14 Documentation, xiii Dot Persistence (DPX), 37 DPX Spectrum Bitmap, 35 Bitmap tab, 37 display control buttons, 22 Dot Persistence, 37 Hit percent, 35, 38 how to display, 36 Infinite persistence setting, 37, 38 Intensity field, 37 Max setting, 38 Min setting, 38 overview, 35 Persistence, 35 Variable persistence setting, 37 Drawer buttons, 21 Drawing a measurement direction arrow (iMap), 70

Freq button, 20 FREQ REF IN connector, 16 Frequency span (spectrum), 31 Front trace button, 22 Functional verification, 8 Frequency span (spectrum), 31 Front trace button, 22 Functional verification, 8 If OUT connector, 16 IF Output enabling, 43 Humidity operation specifications, 2 measurement icons, delete, 68 measurement mapping, 65 move a measurement icon, 67 overview, 62 plot a measurement on a map, 65 remove a direction arrow, 71 start iMap mode, 62

take automatic map measurements, 72 view measurement icon values, 68 view measurement values of an icon, 68 iMap Converter, 76 Increment control, 25 Indoor color scheme, 12 Infinite persistence setting (DPX), 37, 38 Input field entry controls, 25 Input signal characteristics, 2 Input voltage requirements, 2 Input/Output connectors, 15 Installing batteries, 4 Instrument cleaning, 3 Instrument connectors, 13 Instrument software, xiii Instrument USB port, register on PC, 81 Instrument-to-PC file interchange, 78 Intensity field (DPX), 37	K Key features, xii Keypad button, 25 L Lightning, preventing personal injury, xvi Load a region summary (signal classification), 61 Loading a map file (iMap), 64 Log measurements button (iMap), 72 Logging iMap measurements, 72 M Map file concepts (iMap), 63 Map file conversion program, 76 MapInfo Interchange Format (.mif) map file, 76 Mapping a measurement, 65 Max setting (DPX), 38 Measure Spectral Correlation, 54 Measurement delete a measurement direction arrow (iMap), 71 display control buttons, 22	draw a measurement direction arrow (iMap), 70 drawers, 17 iMap icon types, 68 mapping a measurement (iMap), 65 mode buttons, 17, 24 reference frequency status button, 18 results screen, 17 select measurement to display, 29 view iMap measurement icon values, 68 Menus, 18 Microphone input, 15 .mif, 63 MIF, 63 Min setting (DPX), 38 Move a measurement icon (iMap), 67 Move region button, 22 Move signal display button, 22 Off (power), 8 On (power), 8
---	--	---

Online help, 26 Opening RFHawk, 11 Operating basics, 27 Operating considerations, 2 Outdoor color scheme, 12 Overview (iMap), 62	PS/2 keyboard connector, 15 R Ref Level button, 20 Region define a region, 48	Save a region summary (signal classification), 61 SC plot, 56 SC test, 54 Screen display colors, 12 Select a measurement type, 29 Serial RS-232 connector, 15
Parameter entry controls, 25 Parts of the instrument, 13 Pause button, 18 PC software, xiii PCMCIA ports, 13 Persistence (DPX), 35 Plot measurements (iMap), 65 Plot spectral correlation, 56 Power AC adapter requirements, 2 On/Standby button, 14 powering on and off the instrument, 8 status panel, 13 Power/Display status, 14 Preventing personal injury from lightning, xvi	edit a region, 51 load a survey summary, 61 save a survey summary, 61 survey summary, 60 Register instrument USB port, 81 Remote access methods, 78 Remove a direction arrow (iMap), 71 Reset button, 14 Reset measurement button, 22 RF IN connector, 16 RF input characteristics, 2 signal gain/attenuation button, 19 Run button, 18 Running RFHawk, 11	Serial RS-232 connector, 15 Set other spectrum parameters, 32 Setting display colors, 12 signal standards, 27 signal types, 28 Signal classification declare a region, 58 define a region, 48 edit a region, 51 load a survey summary, 61 None, 58 Permitted, 58 save a survey summary, 61 survey summary, 60 Unauthorized, 58 Unknown, 58 Signal Classification mode button, 24 Signal input characteristics, 2 Signal input connectors
Product features, xii	Safety Summary, v	Reference Frequency Input, 16

RF Input, 16	main controls, 17	TRIGGER/TIMING IN connector, 16
TRIGGER/TIMING IN, 16	measurement mode button, 24	Triggering
Signal standards	parameter tabs, 32	enabling, 45
add signal standards to selection	set frequency span, 31	usage tips, 46
lists, 27	set measurement frequency, 31	
enabling, 27	set other spectrum	U
Signal types	parameters, 32	
add signal types to selection	set reference level, 31	Undo display action button, 22
lists, 28	Standard accessories, 1	Unpack the instrument, 1
enabling, 28	Starting RFHawk, 11	Upgrades, software, xiv
Software, xiii	Status panel, 14	USB Host connector, 15
Software upgrades, xiv	Survey summary (signal	USB Slave connector, 15
Span, 31	classification), 60	User interface
Span buttons, 20		color schemes, 12
Specifications, 87	т	command bar, 17, 18
Spectral Correlation	T	measurement drawers, 17
Plot, 56	Taking a spectrum measurement, 31	measurement mode buttons, 17
Test (measure), 54	Temperature range operation	measurement results screen, 17
Spectrogram	specifications, 2	menus, 18
display spectrogram button, 22	Test Spectral Correlation, 54	overview, 17
dual spectrum/spectrogram	Thunderstorms, preventing personal	spectrum analyzer controls, 17
display, 33	injury, xvi	USGS Digital Line Graph (.opt) map
how to display, 33	Touch screen	file, 76
view a data record, 34	calibrate, 9	Using the touch screen, 9
Spectrum	concepts, 9	
display control buttons, 22	on/off status, 14	V
displaying a waveform, 31	Touch-screen cleaning, 3	Variable persistence setting (DPX), 37

Verifying instrument functionality, 8
View a spectrogram record, 34
View measurement icon contents
(iMap), 68
Virtual CE
download, install, configure, 83

run on PC, 85

W

Weight, 2

7

Zoom display button, 22